质数和合数教学设计及评析
质数和合数教学设计及评析
教学内容:九年义务教育五年制小学数学质数合数。
教学目标: 1. 培养学生自主探索、独立思考、合作交流的能力。
2.培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
3. 理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
教学过程:
活动一:以新闻引入
活动目的:创设情境,激发学生主动探索的欲望.
活动过程:
刚才大家提起“歌德巴赫猜想”,贾老师也很感兴趣,而且一直在搜集这方面材料,点击课件, 很巧前一段有这样的报道-----小时候就听说有人把“歌德巴赫猜想”比做数学王冠上的明珠,点击课件,今天竞有人悬赏100万美元求征“歌德巴赫猜想之解” ,歌德巴赫猜想到底是什麽呀?有兴趣看看吗?点击课件
出示:大于4的偶数总能写成两个奇素数之和。
师: 谁来读一下.著名的哥德巴赫猜想.生读.
师:就这样一句话呀。你读懂了吗?你读懂什麽啦?
生:大于4的偶数 能举个例子吗? 6、8、10……
奇数:什麽是奇数?
素数(质数): 什么样的数是质数?
师:哦你们是这样理解的.看来质数与约数有直接关系。你从那知道的?
教学反思: 这样的教学,使学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入新课。这样从新闻入手,激发了全体学生的兴趣,使课堂气氛顿时活跃起来.为本节课的顺利实施提供了有效的条件。
活动二: 理解质数合数的意义
活动目的: 让学生自己去经历观察、实验、猜想、证明等数学活动的过程,发展合情推理能力,初步的演绎思维能力及解决问题的能力。
活动过程:
1、 认识质数
.师:看来你们对这个猜想已经初步理解了,我们能试着写一个符合这个猜想的式子吗。
生:8=3+5 3、5是奇数吗?是质数吗?
10=11+3 3、11是奇数吗?是质数吗?
14=7+7 同意吗?为什么?
师:都有兴趣举,拿出本来,看谁举的多。
生:举例。你举了几个.师把最多的式子板书黑板.
师:还有补充吗?
师:我们按照自己对“哥德巴赫猜想”的理解写出了这些式子,是否都符合这个猜想呢?
师:符号右边都是奇数吗?都是质数吗?质数有什么共同特点?
生:除了1和它本身不再有其他约数的数叫质数。
师:能举出一个质数吗?5 是质数,为什麽?17是质数,为什么?
师:都想举拿出本举看谁举得多?四人交流一下。
师:生汇报。这些数都是质数,到底什么是质数。板书:质数
2、认识合数。
.师:9这个数为什么不是质数?我们把这样的数叫什麽数。
生:合数,为什么?
师:谁能再举一个合数。什么是合数?板书:合数.
3、今天我们学习了质数和合数.板书课题:质数 合数有问题吗?
4、判断数字卡片是质数还是合数?
出示:5、9 为什么?
抢答:3、19、49、63、47、39、121、2、1、31、5730……
师:2为什么是质数?1为什么不是质数也不是合数?
教学反思: 教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。当时的课堂气氛和谐、民主。收到了良好的效果。
活动三:学生自己选择要研究的问题进行活动。
活动目的:教师要主动把课堂教学活动的主角位置让给学生,把课堂教学活动的时间多分给学生使用,把课堂教学活动的内容多留给学生处理解决,教师做好组织、设计、指导或点拨,主导者要让贤于主体者,采用这一教法,可让学生认识“自我”,感受到“自我”的价值。爱因斯坦说过:“提出一个问题比解决一个问题更重要。”
活动过程:
1.你还想研究质数合数的那些知识?(学生提出很多)
如:(1)找最大质数.
(2)如何判断一个数是质数还是合数.
(3)自然数中是不是除了质数就是合数……
2.请各小组选一个你们喜欢研究的问题,开始研究吧.
3.汇报研究成果.
教学反思: 教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分让位还权,放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能在课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络……学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。体现出学生学习的主体参与意识,此环节的处理,虽然耽误了一些时间, 但我想还是值得的.教师应以学生为本,而不应以备好的教案为本.
活动四:回到开头。
活动目的: 教师本着以人的发展为本的教学理念,着眼于学生的可持续发展.
活动过程:
1.我们学习了质数和合数,对于哥德巴赫猜想中的奇素数你是怎么理解的?点击课件出示:大于4的偶数总能写成两个奇素数之和。
师:是不是所有一个尽可能大的偶数总能写成两个奇素数之和呢?能证明吗?
师:虽然我们现在还不能证明?但是通过这节课我们对哥德巴赫猜想的理解和我们之间的交流。你们是不是已经感受到了数学王国的神秘。
2.著名科学家牛顿曾说过这样一句话:我之所以取得今天的成绩,是因为我站在巨人肩膀上的缘故。同学们其实你们已经站在巨人肩膀上研究问题啦。这使我坚信,在不久的将来,在座的各位通过不懈的努力,将来肯定会有人摘下这颗数学王冠上的明珠,解开“哥德巴赫猜想。
教学反思:当时学生举手非常踊跃,表现出一种探索的欲望, 敢于探索科学之谜的精神,充分展示出了数学自身的魅力。
六、板书:略。
教学反思:
一 新课程标准中指出;“让学生经历数学知识的形成与应用过程。”数学学习过程的实质是现实世界各种数量关系内化上升为形式化的过程。数学知识本身的特点决定了“数学教育的主要活动是思想实验。” 为此, 数学教师应充当教练的角色,面向全体学生,因材施教,以千差万别的方式练就千差万别的学生,从而实现“人人学有价值的数学”;“人人都能获得必须的数学”;“不同的人在数学上得到不同的发展”;
1.创设情境是落实新课程标准的重要措施。
新课程标准就数学学习方式提出如下建议:数学教学应“从学生的生活经验和已有知识背景出发,想他们提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能,数学思想和方法,同时获得广泛的数学活动经验。”
有人说:“你拉来一批马给它喝水,不如让他感到口渴。”在讲“质数、合数”这节课时。我沿着新课程标准的理念设计安排了这样的导入:“教师叙述,2002年3月20日北京日报第九版有这样的报道:英美两家出版社悬赏100万美元,限期两年求证歌德巴赫猜想之解,截稿日期就是今天。”……随着上述情境的不断展开,学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入新课。这样从新闻入手,让学生感到口渴,学的知识有用,同时也感受到了数学自身的魅力。对数学随之充满了无限的兴趣,为本节课的顺利实施提供了有效的条件。
2.教师的鼓励为学生体验成功搭设了舞台。
成功与快乐是学习的一种巨大的情绪力量,教师不失时机的积极鼓励,能使学生产生学好数学的强烈欲望.因此,教师要对学生任何成功的言行都要给予及时、明确和积极的强化。如微笑、点头、重复和阐述学生的正确答案。至于学生的一些错误反应,应该鼓励学生继续努力。可以对学生说:“有进步,谁能再补充一下?” 在讲“质数、合数”这节课,教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。如:“你们的例子都举对了吗?同桌互相检查一下,你们听明白他的意思了吗?谁愿意再给大家说一遍?就用他的方法试一试?等,看似简简单单的几句话,教学民主却随处可见。”又如“在学生看过歌德巴赫猜想内容后,教师问你懂吗?学生说“我知道素数”教师及时评价:你还知道素数那,真了不起。你从哪知道的?学生说书上看的。教师评价:从你的言谈举止就看出了你是个爱读书的学者。等等。由于采用了新课程标准的理念,让学生充分体验了成功的喜悦。
3.学生的体验为探索与创造提供了可持续性发展的条件。
爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在教学“质数、合数”这节课时,教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能再课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络……学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。在这一过程中,当学生碰到困难时,教师是启发者,当学生迷路时,教师是指导者,当学生获得成功时,教师则是鼓励者。由于学生在数学活动中获得了成功的体验,有机会接触、了解、钻研自己感兴趣的数学问题,最大限度的满足了每一个学生数学学习的需要,让不同的人在数学上得到了不同的发展。
本节课中我本着以人的发展为本的教学理念,着眼于学生的可持续发展,注重教学目标的多元化,在价值目标取向上不仅仅局限于学生获得一般的解决知识技能,更重要的是让学生在数学学习过程中感受到数学自身的魅力,获得数学的基本思想,了解数学的价值,体验问题解决的过程。