范文网 >教案大全 >数学教案 >初一上册数学《正数和负数》教案

初一上册数学《正数和负数》教案

白满川 分享更新时间:
投诉

初一上册数学《正数和负数》教案

作为一名人民教师,通常会被要求编写教案,借助教案可以让教学工作更科学化。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的初一上册数学《正数和负数》教案,欢迎阅读,希望大家能够喜欢。

初一上册数学《正数和负数》教案1

教学目标:

1.正确理解正,负数及零的意义,会用正,负数表示具有相反意义的量,能简单说出正数和负数的意义。

2.借助生活中的实例理解正数,负数的意义,体会负数引入的必要性和有理数应用的广泛性。

3.通过有理数的学习,培养抽象思维能力、归纳与概括能力。

教学重点:

正确理解负数的意义,认识数学符号正号“+”和负号“-”并用这两个数学符号表示一个正数或负数

教学难点:

体会负数的意义,两种相反意义的量。

教学过程设计:

1.创设情境,引入新知

教师展示教科书图1.1-1并提出问题1:哪位同学知道这些图片介绍的是什么内容?学生回答,教师补充说明数的产生与日常生活,生产实践的关系,感受数随着社会的发展而发展的必要行。

【设计意图】:使学生感受数的产生和发展离不开生活和生产的需要。

问题2:请同学们阅读本章的引言,你能回答其中的问题吗?

学生思考并解释

【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答,让学生阅读并尝试回答,一方面让他们感受在生活,生产中需要用到负数,另一方面让他们知道要解决这些问题就要学习新的数的知识,从而激发学生的求知欲

2.观察感知,理解概念

问题3:根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?

学生给出正确答案后,教师给出正,负数的定义,大于0的数叫做正数,在正数前加上符号“-”的数叫做负数。

问题4:阅读课本第二页倒数第二段,你能举例说明什么叫一个数的符号吗?

学生阅读举例,只要学生说出与课本不同的实例并说明它们的符号就表明他们看懂了这段话。

教师补充:有时,为了明确表达意义,在正数前也加上“+”号,正数的符号是“+”,负数的符号是“-”,0既不是正数也不是负数。

3.例题示范,学会应用

课本例题,提问:你是怎么理解例的?

如果学生回答不完善再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少一千克,你认为应该怎样表示他的体重增长值?

总结:体重增长值可能是正的也可能是负的,体重增长值为负数相当于体重减少。再提问:仿照解决

【设计意图】通过具体问题情境,使学生学会正数与负数是具有相反意义的量的方法,通过师生合作突破用正数,负数表示指定方向变化的.量这一难点,通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。

问题5:你能从例题的解答过程中总结一下如何用正数,负数表示实际问题中具有相反意义的量吗?

.先找出具有相反意义的量的词,如:增加和减少,零上和零下,收入和支出,上升和下降等

.选定一方用正数表示,另一方就用负数表示

.实际问题中,有时需要描述指定方向变化的量,如:本例中,进出口总额减少6.4%,表示为增长-6.4%,这就是说增长量是一个负数实际上是减少了,也可以说成“负增长”。

.当数据没有变化时,增长率为0

【设计意图】引导学生及时总结、提炼出可以指导解答其他同类问题的一般性结论

4.巩固概念,学以致用

练习:第三页练习1,2

【设计意图】巩固性练习,同时检验用正数,负数表示具有相反意义的量的掌握情况

5.归纳小结

回顾本节课内容

6.布置作业

习题1.1第1.2.4题

初一上册数学《正数和负数》教案2

一、内容和内容解析

1.内容

正数和负数的意义.

2.内容解析

引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要.本课内容是本章后续的有理数的相关概念及运算的基础.

通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负.

基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量.

二、目标和目标解析

1.教学目标

(1)体会引入负数的必要性;

(2)了解负数的意义,会用正数、负数表示具有相反意义的量.

2.目标解析

(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;

(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义.在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量.

三、教学问题诊断分析

学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限.在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难.这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致.突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量.

本节课的教学难点为:用正数、负数表示指定方向变化的量.

四、教学过程设计

1.创设情境,引入新知

教师展示教科书图1.1-1,并提出

问题1哪位同学知道这些图片介绍的是什么内容?

学生回答.教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性.

【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.

问题2请同学们阅读本章的引言.你能尝试着回答一下其中的问题吗?

学生思考并尝试解释.对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.

【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答.让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲.

2.观察感知,理解概念

问题3根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?

学生回答,给出正确答案后,教师给出正数、负数的描述性定义:

大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数.

问题4阅读课本第2页倒数第二段.你能举例说明什么叫一个数的符号吗?

学生阅读,举例.只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话.

教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”.0既不是正数,也不是负数.

【设计意图】让学生阅读课文,以培养他们的读书习惯.通过学生举例,可以检验他们对这段课文的理解情况.因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了.

3.例题示范,学会应用

例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率.

提问:你是怎么理解例(1)的?

如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?

师生合作回答上述问题.估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的体重增长值为负数,相当于体重减少.

再提问:你能仿照第(1)题的解答,自己解决(2)吗?

【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的.量这一难点.通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词.

问题5你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?

学生总结,师生共同补充、完善.要总结出:

(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;

(2)选定一方用正数表示,那么另一方就用负数表示;

(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;

(4)当数据没有变化时,增长率是0.

【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论.一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负.

问题6请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案.

【设计意图】让学生用刚刚总结出的结论解决问题.

4.巩固概念,学以致用

练习:教科书第3页练习1,2.

【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况.

5.归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)你能举例说明引入负数的必要性吗?

(2)你能用例子说明负数的意义吗?

(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数.你能举例说明吗?

6.布置作业:教科书习题1.1第1,2,4,8题.

五、目标检测设计

1.以下各数20__年07月08日-一帆风顺-一帆风顺祝大家健康快乐!天天都有好心情中,正数有;负数有.

【设计意图】考查对正数、负数概念的理解.

2.向东行进-50 m表示的实际意义是.

【设计意图】会用正数、负数表示具有相反意义的量.

3.下列结论中正确的是( )

A.0既是正数,又是负数

B.O是最小的正数

C.0是最大的负数

D.0既不是正数,也不是负数

【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫.

4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义.

初一上册数学《正数和负数》教案3

《1.1正数和负数》教学设计

教学目标

1. 通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);

2. 进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

3. 激发学生学习数学的兴趣.

[教学重点与难点]

重点:深化对正负数概念的理解.

难点:正确理解和表示向指定方向变化的量

《1.1正数和负数》同步练习

1、下列说法正确的是( )

A、零 是正数不是负数 B、零既不是正数也不是负数

C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数

2、向东行进-30米表示的意义是( )

A、向东行进30米 B、向东行进-30米

C、向西行进30米 D、向西行进-30米

3、零上13℃记作 +13℃,零下2℃可记作( )

A、2 B、-2 C、2℃ D、-2℃

4、某市20 15年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高 气温比 最低气温高( )

A、-10℃ B、-6℃ C、6℃ D、10℃

5、 中,正数有 ,负数有 .

6、如 果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,

水位不升不降时水位变化记作 m.

7、在同一个问题中,分别用正数与负数表示的量具有 的意义.

8、甲、乙两人同时从A地出发, 如果向南走48m,记作+48m,则乙向北走32m,记为 ,

这时甲乙 两人相距 m. .

9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适.

10、20xx年我国全年平均降水量比 上年减少24㎜,20xx年比上年增长8㎜,20xx年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.

11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么 意思?这时物体离它两次移动前的位置多 远?

12、某老师把某一小组五名同学的.成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表 示90分,正数表示超过90分,则五名 同学的平均成绩为多少分?

13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃ ,又过7小时气温又下降了4℃,第二天0时的气温是多少?

《1.1正数和负数》同步练习含答案

19.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名 女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.

(1)这10名女生的达标率为多少?

(2)没达标的同学做了几个仰卧起坐?

解:(1)这10名女生的达标率为8÷10 ×100%=80%.

(2)没达标的同学做仰卧起坐的个数分别是23个和27个.

初一上册数学《正数和负数》教案4

一、教学目标

1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

3、学会用正负数表示实际问题中具有相反意义的量。

二、教学重点和难点

重点:正负数的概念

难点:负数的概念

三、教具

投影片、实物投影仪

四、教学内容

(一)引入

师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

生:自然数

师:为了表示“没有”,又引入了一个什么数?

生:自然数0

师:当测量和计算的结果不是整数时,又引进了什么数?

生:分数(小数)

师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

请学生用数表示这些量,遭遇表示困难。

师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

(二)新课教学

1、相反意义的量

师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

(1)汽车向东行驶2.5千米和向西行驶1.5千米;

(2)气温从零上6摄氏度下降到零下6摄氏度;

(3)风筝上升10米或下降5米。

引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义

请学生举出一些相反意义的量的实例。

教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

2、正数与负数

师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的'数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

生:(讨论后得出)不能。

师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

(三)练习

1、学生完成课本第4页练习1,2,3

2、补充练习

(1)在-2,+2.5,0,,-0.35,11中,正数是,负数是;

(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为。

(四)小结

1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

(五)作业

见作业1.1节作业。