苏教版六年级数学下册教案
苏教版六年级数学下册教案汇编6篇
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么写教案需要注意哪些问题呢?下面是小编为大家整理的苏教版六年级数学下册教案6篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
苏教版六年级数学下册教案 篇1
教学目的:
1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。
2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。
教学重点:
掌握用转化的策略解决分数问题的方法,增强策略意识。
教学难点:
根据具体问题,确定转化后要实现的目标和转化的具体方法。
教学过程:
一、看谁的联想最多?
出示:男生人数是女生的2/3 看到含有分率的句子,你能想到些什么?
学生可能说:
(1)把女生人数看作“1” ——找单位“1”
(2)男生人数有这样的.2份,女生人数有这样的3份。
(3)一共有这样的5份
(4)女生比男生多1份 ——份数
(5)男生人数占全班人数的2/5,女生人数占全班人数的3/5
(6)女生是男生的3/2 ——分数
小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。
二、新授
1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”
2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。
3、学生独立完成,教师巡视指导。
4、指名交流解题思路。
5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?
6、学生独立完成,小组交流。指名交流。
学生可能想到:
(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”
50÷(3+2)=10(人) 10×3=30(人)
(二)将关键句转化成分数来理解“女生占全班人数的3/5”
50×3/5=30(人)
7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。
8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)
三、巩固练习
1、练一练:学校美术组有35人,是合唱组人数的 5/8 。学校合唱组有多少人?
(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)
(2)反思:为什么把美术组人数是合唱组的 5/8转化为合唱组的人数是美术组的8/5。
(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。
板书:问题转化成已知条件的几分之几。
2、练习十四5:
(1)看图填空。
绿彩带
红彩带
绿彩带比红彩带短 2/7 ,红彩带比绿彩带长 ()/() 。
(2)一杯果汁,已经喝了 2/5 ,
喝掉的是剩下的 ()/() ,剩下的是喝掉的 ()/() 。
3、练习十四6
(1)白兔和黑兔共有40只,黑兔的只数是白兔的 3/5 。黑兔有多少只?
黑兔只数占白兔、黑兔总只数的 ()/() 。
(2) 小明看一本故事书,已经看了全书的 3/7 ,还有48页没有看。 小明已经看了多少页?
已经看的页数是没有看的页数的 ()/() 。
4、只列式,不计算。(说说你是怎样转化的)
(1)修一条长30千米的路,已经修的占剩下的 2/3 ,已经修了多少千米?
(2)山羊有120只,比绵羊少 1/6 ,绵羊有多少只?
(3)甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙三数的和是180,甲、乙、丙三个数各是多少?
5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有 1/3是白子。这三堆棋子一共有白子多少枚?
6、思考题:
有两枝蜡烛。当第一枝燃去4/5 ,第二枝燃去 2/3 时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。
全课小结:今天这节课,我们学习了什么知识?你有哪些收获?
板书设计:
用转化思路解答分数除法应用题
繁 简
用方程解答: 用乘法解答:
解:设女生有x人。
x+2/3 x=35
5/3x=35 35×3/5=21(人)
x=21
答:女生有21人
苏教版六年级数学下册教案 篇2
复习内容:第12册P92—93“练习与实践”7—9题。
复习目标:
1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。
2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。
3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。
教学准备:课件
课时安排:第二课时
课前设计:
1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?
2.学生练习、交流、检验。
3.练习P93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的`原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。
4.练习P93第9题。
学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。
苏教版六年级数学下册教案 篇3
教学内容:教材55页的例2和练一练,练习十二的第3--5题。
教学目标:使学生经历探究根据给出的方向和距离在平面上画出相关物体的位置的方法,并能根据给出的方向和距离在平面图上准确画出相关物体的位置。
重点难点:帮助学生进一步理解和掌握用方向和距离在平面图上表示物体位置的方法。
教学准备:教学光盘
教学过程:
一、复习
1、出示以灯塔为中心的平面图。
(1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?
相机指出:东——E 西——W 南——S 北——N
(2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。
2、如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。
二、展开
1、明确清凉岛的位置。
(1)题目中告诉我们清凉岛在哪里?
(2)你能在图上指一指清凉岛的大致位置吗?
自己在图上指出来,并和同学交流一下。
2、探究操作。
(1)怎么在图上画出清凉岛的位置呢?
在小组中讨论后全班交流。
使学生认识到要先画出表示方向的射线,再确定灯塔到清凉岛的图上距离。
(2)怎么画出北偏东40°的射线?
各自用量角器在图上画一画,边画边思考:应该怎么摆放量角器,怎么看量角器上的度数?
指名上黑板画,注意引导学生正确摆放量角器。
让学生说说画表示方向的射线时要注意什么?
(3)怎么确定灯塔到清凉岛的距离?
图中告诉我们这幅图的`比例尺是多少?表示什么意思?
清凉岛在北偏东40°方向20千米处,图中清凉岛的位置在灯塔处沿北偏东40°方向的射线几厘米的地方?怎么想?
各自计算后指名汇报:20÷5=4(厘米)
追问:为什么用20÷5就是图上距离了?
引导学生在图上标出清凉岛的位置,并与同学交流。
3、试一试
(1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?
(2)各自独立完成。
(3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。
三、练习
1、讨论“练一练”
(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?
自己先算一算实际距离,然后与同座位的同学说一说。
汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?
孔雀园呢?
引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。
(2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。
各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。
练习后交流思考的方法和具体的画法。
2、讨论练习十二第3题。
(1)出示题目,理解题目所包含的信息。
(2)飞机A在机场的什么位置?
(3)飞机B、C、D、E分别在机场的什么位置?你能在途中表示出这四架飞机的位置吗?
各自在图上表示出来,然后汇报交流。
四、课堂作业:练习十二第4题和第5题以及补充习题相关练习。
苏教版六年级数学下册教案 篇4
教学内容:教科书94页“练习与实践”的第7~10题。
教学目标:
1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。
2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。
教学重点:
使学生加深认识比例的意义和基本性质。
教学难点:
能判断两个比能能不能组成比例,能比较熟练地解比例。
教学准备:多媒体
教学过程:
一、与反思
今天我们一起来复习正比例和反比例相关知识。
怎样判断两种量是否成正比例或反比例关系?
学生交流
二、练习与实践
1.完成“练习与实践”第7题
让学生先独立完成,再点评。
2.完成“练习与实践”第8题
引导学生列举几组对应的数值
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题
第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)
第2小题让学生在教材的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的`路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题
什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)
怎样求图上距离?怎样求实际距离
学生量出的图上距离。
利用的线段比例尺,求出相应的实际距离
三、
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于正比例和反比例的复习
苏教版六年级数学下册教案 篇5
教学内容:
比例
第一课时
教学目标:
1、使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。
2、使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。
3、初步体会图形的相似,进一步发展空间观念。
重点难点:
1、理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小
2、学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似,进一步发展空间观念。
教学过程:
一、导入。
呈现例1图片在黑板上。
提问:把放大前后的两幅画相比,你能发现什么?
根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后,长方形的长和宽与原来相比,其中变化有什么规律?这就是我们今天要学习的内容。
板书课题:图形的放大和缩小
二、教学例1。
1、认识图形的放大
出示例1中两幅图片长和宽的数据。
提问:两幅图的长有什么关系?宽呢?
组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。
指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。
提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?
2、认识图形的缩小。
谈话:我们可以把一个图形按一定的比放大,也可以把一个图形按一定的比缩小。 提问:如果要把第一幅图按1:2的比缩小,缩小后的长与宽各应是原来的`几分之几?
各是多少厘米?
先在小组里说一说,再组织全班交流。
三、教学例21、出示例2,让学生读题
(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?
(2)学生画图,再展示、交流。
(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思考的方法。
重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。
2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?
让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)
3、教学试一试
先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?
提问:量一量,斜边的长也是原来的2倍吗?你发现什么?
小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。
四、巩固练习
1、做练一练
让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有关边的长度是原来的几分之几,各应画几格?
2、做练习六第1、2题。
第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。
五、全课小结。
什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?
六、课堂作业 补充习题28-29页
苏教版六年级数学下册教案 篇6
教材分析:
本单元在学生认识了圆,掌握了长方体和正方体的形状特征以及表面积与体积计算方法的基础上编排,是小学数学最后教学的形体知识。与长方体、正方体一样,圆柱和圆锥也是基本的几何形体,在日常生活和生产劳动中经常能够看到这些形状的物体。教学圆柱和圆锥,能够扩大学生认识几何形体的范围,丰富对形体的认识,有利于解决更多的实际问题。教学圆柱和圆锥,也能够丰富学生认识几何形体的活动经验,深入理解体积的意义和常用的体积单位,有利于完善认知结构,发展空间观念。教学圆柱和圆锥,还能够给学生提供探索表面积和体积计算公式的机会,有利于转化能力和推理能力的进一步提高。全单元编排五道例题,具体安排见下表:
例1 圆柱、圆锥的形状特点
例2 圆柱的侧面积
例3 圆柱的表面积
例4 圆柱的体积
例5 圆锥的体积
教学目标:
1、 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
教学重点:圆柱体积计算公式的推导和应用。
教学难点:灵活运用知识,解决实际问题。
课时安排: 10课时
第一课时:认识圆柱和圆锥
教学内容:教材第9~10页的例1和第10页的“练一练”,完成练习二第1~3题。
教学目标:
1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.
2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学重点:掌握圆柱、圆锥的特征。
教学难点:掌握圆柱、圆锥的特征及空间观念的形成。
教学准备:1、多媒体 2、学生每人准备一个圆柱或一个圆锥形实物。
教学过程:
一、创设情境,初步感知。
1、课件出示:圆柱、圆锥、正方体、长方体等立体图形的示意图
2、教师:这么多物品,你知道它们各是什么形状吗?
指名学生分别说。
谈话:回忆一下学过的图形各有什么特征?学生回答。
谈话:不论长方体还是正方体,它们都是由一些平面图形围成的立体图形,你知道图(4)是什么形状吗?学生回答,教师板书:圆柱
图(5)是什么形状?板书:圆锥
你能说一说日常生活中你见过那些圆柱和圆锥?(指名学生说,如铅笔、烟囱、套管、铅锤等)
这节课就让我们一起进一步认识圆柱、圆锥。
二、合作探究,认识特征
(一)认识圆柱的特征
1、激发兴趣、提出问题
谈话:对于圆柱和圆锥,你想知道有关它们的哪些问题?
学生回答,教师把有关圆柱、圆锥的问题写在黑板上。
谈话:同学们真聪明,提了这么多有价值的问题,今天这节课我们先来研究一下圆柱、圆锥的特点,其它问题我们以后再来研究,好吗?
2、认识圆柱的底面和侧面
教师出示圆柱实物并将直尺靠在圆柱实物边上,告诉学生上下粗细相同的圆柱叫直圆柱。
谈话:请同学们拿出自己准备的圆柱实物,仔细看一看。
①先看一看,你认为它有几个面?
②再摸一摸每个面有什么特征?
③然后小组内互相说一说自己手中的实物和同学的实物有什么特点?
教师巡视解答疑惑。
汇报观察结果:
谈话:谁来说说自己的发现?
(先指名学生拿着实物到前面介绍自己的发现,再指名不拿实物说发现。师生及时共同进行评价)
谈话:你是怎么知道上下2个面大小相同的?
指名说,鼓励学生用不同的方法来解决问题。
教师适时加以引导,让学生明确:圆柱上、下两个面是圆形,大小相等,叫圆柱的底面,中间有一个曲面,叫圆柱的侧面。
课件随时演示,将茶筒的底面和侧面抽象出的圆柱立体图形
板书:底面 2个完全相同的圆
侧面 1个曲面
高 两底之间的距离
3、认识圆柱的高
教师从学生拿来的圆柱中随便找两个高矮、粗细不同的圆柱,让学生观察比较。提问:你有什么发现?底面大小决定圆柱粗细,高决定圆柱的高矮
谈话:哪是圆柱的高,谁来指一指?
谈话:你知道你手中的圆柱形有多高吗?想知道它的高有多少条吗?
小组合作动手量一量圆柱的高,记下测量数据,多量几条,你能发现什么?
教师巡视指导
汇报测量结果。指名一组到讲台前演示,
使学生明确:圆柱的高长度相等,有无数条。
提问:什么是圆柱的高?
学生回答,教师板书:板书:高 上下两底面之间的距离(无数条)
教师出示课件演示圆柱的高
(二)认识圆锥
1、谈话:刚才我们认识了圆柱,现在请同学们拿出自己准备的圆锥形物体,观察圆锥体,摸一摸、量一量,和圆柱比一比,它与圆柱有什么不同?你能发现什么?把你看到的、摸到的与小组内的同学交流交流。
学生小组内交流。教师巡视指导。
指名汇报观察结果。
使学生明确圆锥有一个底面是圆形,有一个侧面是曲面。圆锥是尖的有一个顶点。
教师出示圆锥实物课件
思考:圆锥有几条高?
怎样测量圆锥的高?
学生讨论,教师启发学生用平移的方法将藏在圆锥中的高平移出来测量,学生合作动手测量圆锥模形的高并指名上台演示。
板书:底面 1个 圆形
侧面 1个 曲面
高 1条
2、交流对圆锥的认识
3、小组讨论比较圆柱与圆锥的有什么区别与联系?
4、生活中你还见过那些物体是圆锥形的?
5、学生阅读课本9、10页的.内容。
三、巩固练习
四、课堂小结 回顾新知
今天这节课你有什么收获?
使学生进一步掌握圆柱和圆锥的特点,巩固圆柱与圆锥的区别与联系。
五、课堂作业
练习二第3题。
板书设计:
认识圆柱和圆锥
观察—比较—归纳
第二课时:圆柱的侧面积和表面积
教学内容:教材第11页的例2、第12页的例3和第12页的“练一练”,完成练习二第4~6题。
教学目标:
1、让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。
2、让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步形成和发展学生的空间观念。
3、让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教学重难点:
1、理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。
教学准备:师生各备一易拉罐,并把上下面用彩纸包好,剪刀、胶水、圆规、白纸一张、计算器。
教学过程:
一、实验导入,渗透思想
⒈(出示一张长方形纸)老师这儿有一张长方形纸,我想让它站起来,你有什么办法吗?
小结:原来在一定条件下平面可以“化直为曲”。
⒉把这个圆柱形的纸筒打开后是什么形状?
小结:同样地,在一定条件下曲面可以“化曲为直”。
⒊揭题:这节课将运用这个知识来研究圆柱的侧面积和表面积。(板:圆柱的侧面积和表面积)
二、引导探究,学习新知
(一)圆柱的侧面积的计算
老师发现同学们特别爱喝饮料,今天我们共同带来了一瓶椰子汁,看到它,你能提出什么数学问题来?
师引导:我们就来先来解决这位同学提出的商标纸问题,其实就是求什么?(圆柱的侧面积)
1、引导探究圆柱侧面积的计算方法
①设疑:圆柱的侧面是个曲面,怎样计算商标纸的面积呢?
②全班交流:沿着接缝把商标纸剪开,再展平。
③小组合作探究:
那就让我们一起来研究一下,听清要求:先独立剪开商标纸展开,再观察展开后的图形与原来的圆柱有什么关系?把你的发现在小组里交流一下。接头处忽略不计。
④汇报交流:哪个小组愿意上来汇报一下你们的发现?指名上台拿着学具汇报,生。(师再追问:通过刚才同学的汇报,我们知道了这个长方形的长和宽与圆柱有什么关系呀?学生回答,师适时板书)
⑤怎样计算圆柱的侧面积?再次追问:为什么?(补充板书)
⑥小结:你们真不错,巧妙地运用化曲为直,探讨发现了圆柱侧面积的计算方法。
2、计算圆柱的侧面积
①现在请你计算一下这罐椰子汁所用商标纸的面积(出示椰奶罐的底面周长约是 厘米,高约是 厘米)你是怎样算的?
②解决例2:
但在实际生活中有时不直接告诉你底面周长,例如怎么算?学生独立做在书上,指名一生板演,集体反馈。
③思考:要求一个圆柱的侧面积,通常需要知道哪些条件?
④小结:如果没有直接告诉底面周长,应用已知直径(或半径)求周长的方法,然后求侧面积。
(二)探索圆柱表面积的计算方法
1、理解圆柱表面积的含义
①动手贴出圆柱表面积:拿着实物,光这样一个侧面能装饮料吗?还需加上(两个底面)我们把这个圆柱饮料罐各部分一一展开粘在纸上(学生动手操作,师巡视发现两种常见粘法)交流展示,最好这样放。
看着圆柱展开图,让它在头脑中动起来(长方形的长等于…宽等于…)这样我们可以更清楚地想象出长方形与圆柱的关系。
指着图,由这些些部分组成了圆柱的表面积,什么是圆柱的表面积?(板书)
②动手画出圆柱表面展开图:下面我们要画圆柱的展开图,画前先算一算,学生算好后回答,师板书。
要求画在书上的方格纸上,友情提醒:一要想要画出圆柱的哪几个面?二要注意每个方格纸边长厘米,根据算的数据合理布局。(实物投影展示学生作品,作评价)
3、怎样计算圆柱的表面积?
①例3中的圆柱表面积会算吗?
独立做在书上,交流反馈:每步求出的是什么?指出:解答时为清楚最好分步算出各部分面积。
②出示易拉罐的数据,图例:半径:2.5厘米,高:12厘米,求铁皮用料。
③要求一个圆柱的表面积,通常需要知道哪些条件?
三、应用练习,巩固深化
过渡:在实际生活中,有很多圆柱体实物,你会根据实际算出它们要求的面积吗?
1、教材第12页“练一练”(理解题意要求的是圆柱的哪部分面积后独立做)
2、练习二第6题。(通过填表帮助学生进一步区分圆柱的侧面积、底面积、表面积三个不同的概念和不同的算法;整理侧面积、底面积与表面积之间的联系,使计算圆柱表面积的思路更加清楚)
四、全课总结,认识升华
通过今天这节课的学习,你有哪些收获?还有什么问题吗?
五、课堂作业
练习二第4、5题。