数学教案-不等式证明一比较法
数学教案-不等式证明一(比较法)
目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用作差、作商比较法证明不等式。
过程:
一、复习:
1.不等式的一个等价命题
2.比较法之一(作差法)步骤:作差——变形——判断——结论
二、作差法:(P13—14)
1. 求证:x2 + 3 > 3x
证:∵(x2 + 3) - 3x =
∴x2 + 3 > 3x
2. 已知a, b, m都是正数,并且a < b,求证:
证:
∵a,b,m都是正数,并且a<b,∴b + m > 0 , b - a > 0
∴
变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断?
3. 已知a, b都是正数,并且a ¹ b,求证:a5 + b5 > a2b3 + a3b2
证:(a5 + b5 ) - (a2b3 + a3b2) = ( a5 - a3b2) + (b5 - a2b3 )
= a3 (a2 - b2 ) - b3 (a2 - b2) = (a2 - b2 ) (a3 - b3)
= (a + b)(a - b)2(a2 + ab + b2)
∵a, b都是正数,∴a + b, a2 + ab + b2 > 0
又∵a ¹ b,∴(a - b)2 > 0 ∴(a + b)(a - b)2(a2 + ab + b2) > 0
即:a5 + b5 > a2b3 + a3b2
4. 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果m ¹ n,问:甲乙两人谁先到达指定地点?
解:设从出发地到指定地点的路程为S,
甲乙两人走完全程所需时间分别是t1, t2,
则:
∴
∵S, m, n都是正数,且m ¹ n,∴t1 - t2 < 0 即:t1 < t2
从而:甲先到到达指定地点。
变式:若m = n,结果会怎样?
三、作商法
5. 设a, b Î R+,求证:
证:作商:
当a = b时,
当a > b > 0时,
当b > a > 0时,
∴
作商法步骤与作差法同,不过最后是与1比较。
四、小结:作差、作商
五、作业: P15 练习
P18 习题6.3 1—4