范文网 >教案大全 >数学教案 >高一数学教案

高一数学教案

棼谷 分享更新时间:
投诉

高一数学教案(集合15篇)

作为一名无私奉献的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?下面是小编收集整理的高一数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

高一数学教案1

1、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、

8、教学设计(过程)

一、引入

问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?

问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?

问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?

二、原有认知结构的改造和重构

问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系?

学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数

学生阅读教材,并思考:

问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?

学生讨论并回答

三、新概念的形成

问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?

学生回答,并阅读教材,得到任意角三角函数的定义、并思考:

问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?

展示任意角三角函数的定义,并指出它是如何刻划圆周运动的'

并类比函数的研究方法,得出任意角三角函数的定义域和值域。

四、概念的运用

1、基础练习

①口算clipXimage008的值、

②分别求clipXimage010的值

小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值

ⅱ)诱导公式(一)

③若clipXimage012,试写出角clipXimage002[2]的值。

④若clipXimage015,不求值,试判断clipXimage017的符号

⑤若clipXimage019,则clipXimage021为第象限的角、

例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值

若P点的坐标变为clipXimage028,求clipXimage030的值

小结:任意角三角函数的等价定义(终边定义法)

例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?

小结:可以采用三角函数模型来刻画圆周运动

五、拓展探究

问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗?

思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢?

六、课堂小结

问题9:请你谈谈本节课的收获有哪些?

七、课后作业

教材P21第6、7、8题

高一数学教案2

[教学重、难点]

认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

[教学准备]

学生、老师剪下附页2中的图2。

[教学过程]

一、画一画,说一说

1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

2、教师巡查练习情况。

3、学生展示练习,说一说为什么是锐角、直角、钝角?

二、分一分

1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?

2、汇报:分类的标准和方法。可以按角来分,可以按边来分。

二、按角分类:

1、观察第一类三角形有什么共同的特点,从而归纳出三个角都是锐角的`'三角形是锐角三角形。

2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形

3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

三、按边分类:

1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。

2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?

四、填一填:

24、25页让学生辨认各种三角形。

五、练一练:

第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。

第2题:在点子图上画三角形第3题:剪一剪。

六、完成26页实践活动。

高一数学教案3

学习目标:

(1)理解函数的概念

(2)会用集合与对应语言来刻画函数,

(3)了解构成函数的要素。

重点:

函数概念的理解

难点

函数符号y=f(x)的理解

知识梳理:

自学课本P29—P31,填充以下空格。

1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。

2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。

3、因为函数的值域被 完全确定,所以确定一个函数只需要

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:

① ;② 。

5、设a, b是两个实数,且a

(1)满足不等式 的实数x的集合叫做闭区间,记作 。

(2)满足不等式a

(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

分别满足x≥a,x>a,x≤a,x

其中实数a, b表示区间的两端点。

完成课本P33,练习A 1、2;练习B 1、2、3。

例题解析

题型一:函数的`概念

例1:下图中可表示函数y=f(x)的图像的只可能是( )

练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。

题型二:相同函数的判断问题

例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

④ 与 其中表示同一函数的是( )

A. ② ③ B. ② ④ C. ① ④ D. ④

练习:已知下列四组函数,表示同一函数的是( )

A. 和 B. 和

C. 和 D. 和

题型三:函数的定义域和值域问题

例3:求函数f(x)= 的定义域

练习:课本P33练习A组 4.

例4:求函数 , ,在0,1,2处的函数值和值域。

当堂检测

1、下列各组函数中,表示同一个函数的是( A )

A、 B、

C、 D、

2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )

A、5 B、-5 C、6 D、-6

3、给出下列四个命题:

① 函数就是两个数集之间的对应关系;

② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

③ 因为 的函数值不随 的变化而变化,所以 不是函数;

④ 定义域和对应关系确定后,函数的值域也就确定了.

其中正确的有( B )

A. 1 个 B. 2 个 C. 3个 D. 4 个

4、下列函数完全相同的是 ( D )

A. , B. ,

C. , D. ,

5、在下列四个图形中,不能表示函数的图象的是 ( B )

6、设 ,则 等于 ( D )

A. B. C. 1 D.0

7、已知函数 ,求 的值.( )

高一数学教案4

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

高一必修二数学教案41、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的'模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

高一数学教案5

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

教学目的:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学过程:

一、引入课题

1.复习初中所学函数的概念,强调函数的模型化思想;

2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国xxxx年4月份非典疫情统计:

日期222324252627282930

新增确诊病例数1061058910311312698152101

3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

二、新课教学

(一)函数的有关概念

1.函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

注意:

○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素:

定义域、对应关系和值域

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

4.一次函数、二次函数、反比例函数的定义域和值域讨论

(由学生完成,师生共同分析讲评)

(二)典型例题

1.求函数定义域

课本P20例1

解:(略)

说明:

○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的'定义域即是指能使这个式子有意义的实数的集合;

○3函数的定义域、值域要写成集合或区间的形式.

巩固练习:课本P22第1题

2.判断两个函数是否为同一函数

课本P21例2

解:(略)

说明:

○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

巩固练习:

○1课本P22第2题

○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

(1)f(x)=(x-1)0;g(x)=1

(2)f(x)=x;g(x)=

(3)f(x)=x2;f(x)=(x+1)2

(4)f(x)=|x|;g(x)=

(三)课堂练习

求下列函数的定义域

(1)

(2)

(3)

(4)

(5)

(6)

三、归纳小结,强化思想

从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

四、作业布置

课本P28习题1.2(A组)第1—7题(B组)第1题

高一数学教案6

教学目标

1.理解分数指数幂的含义,了解实数指数幂的意义。

2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

教学重点

1.分数指数幂含义的理解。

2.有理数指数幂的运算性质的理解。

3.有理数指数幂的运算和化简。

教学难点

1.分数指数幂含义的理解。

2.有理数指数幂的运算和化简。

教学过程

一.问题情景

上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

二.学生活动

1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系

(1)=(2)=

2.从上述问题中,你能得到的`结论为

3.(a0)及(a0)能否化成指数幂的形式?

三.数学理论

正分数指数幂的意义:=(a0,m,n均为正整数)

负分数指数幂的意义:=(a0,m,n均为正整数)

1.规定:0的正分数指数幂仍是0,即=0

0的负分数指数幂无意义。

3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

即=(1)

=(2)其中s,tQ,a0,b0

=(3)

四.数学运用

例1求值:

(1)(2)(3)(4)

例2用分数指数幂的形式表示下列各式(a0)

(1)(2)

例3化简

(1)

(2)(3)

例4化简

例5已知求(1)(2)

五.回顾小结

1.分数指数幂的意义。=(0,m,n)

无意义

2.有理数指数幂的运算性质

3.整式运算律及乘法公式在分数指数幂运算中仍适用

4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

练习P47-48练习1,2,3,4

六.课外作业

P48习题2.2(1)2,4

高一数学教案7

一、教材

《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情

学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标

(一)知识与技能目标

能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的.方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标

经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标

激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点

(一)重点

用解析法研究直线与圆的位置关系。

(二)难点

体会用解析法解决问题的数学思想。

五、教学方法

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

六、教学过程

(一)导入新课

教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

(二)新课教学——探究新知

教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

判断方法:

(1)定义法:看直线与圆公共点个数

即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

(2)比较法:圆心到直线的距离d与圆的半径r做比较,

(三)合作探究——深化新知

教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

让学生自主探索,讨论交流,并阐述自己的解题思路。

当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

(四)归纳总结——巩固新知

为了将结论由特殊推广到一般引导学生思考:

可由方程组的解的不同情况来判断:

当方程组有两组实数解时,直线l与圆C相交;

当方程组有一组实数解时,直线l与圆C相切;

当方程组没有实数解时,直线l与圆C相离。

活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

(五)小结作业

在小结环节,我会以口头提问的方式:

(1)这节课学习的主要内容是什么?

(2)在数学问题的解决过程中运用了哪些数学思想?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

七、板书设计

我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高一数学教案8

本文题目:高一数学教案:函数的奇偶性

课题:1.3.2函数的奇偶性

一、三维目标:

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

二、学习重、难点:

重点:函数的奇偶性的概念。

难点:函数奇偶性的'判断。

三、学法指导:

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

四、知识链接:

1.复习在初中学习的轴对称图形和中心对称图形的定义:

2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。

五、学习过程:

函数的奇偶性:

(1)对于函数 ,其定义域关于原点对称:

如果______________________________________,那么函数 为奇函数;

如果______________________________________,那么函数 为偶函数。

(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。

六、达标训练:

A1、判断下列函数的奇偶性。

(1)f(x)=x4;(2)f(x)=x5;

(3)f(x)=x+ (4)f(x)=

A2、二次函数 ( )是偶函数,则b=___________ .

B3、已知 ,其中 为常数,若 ,则

_______ .

B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )

(A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对

B5、如果定义在区间 上的函数 为奇函数,则 =_____ .

C6、若函数 是定义在R上的奇函数,且当 时, ,那么当

时, =_______ .

D7、设 是 上的奇函数, ,当 时, ,则 等于 ( )

(A)0.5 (B) (C)1.5 (D)

D8、定义在 上的奇函数 ,则常数 ____ , _____ .

七、学习小结:

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

八、课后反思:

高一数学教案9

第一节 集合的含义与表示

学时:1学时

[学习引导]

一、自主学习

1.阅读课本 .

2.回答问题:

⑴本节内容有哪些概念和知识点?

⑵尝试说出相关概念的含义?

3完成 练习

4小结

二、方法指导

1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系

3、掌握集合的.表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法

[思考引导]

一、提问题

1.集合中的元素有什么特点?

2、集合的常用表示法有哪些?

3、集合如何分类?

4.元素与集合具有什么关系?如何用数学语言表述?

5集合 和 是否相同?

二、变题目

1.下列各组对象不能构成集合的是( )

A.北京大学2008级新生

B.26个英文字母

C.著名的艺术家

D.2008年北京奥运会中所设定的比赛项目

2.下列语句:①0与 表示同一个集合;

②由1,2,3组成的集合可表示为 或 ;

③方程 的解集可表示为 ;

④集合 可以用列举法表示。

其中正确的是( )

A.①和④ B.②和③

C.② D.以上语句都不对

[总结引导]

1.集合中元素的三特性:

2.集合、元素、及其相互关系的数学符号语言的表示和理解:

3.空集的含义:

[拓展引导]

1.课外作业: 习题11第 题;

2.若集合 ,求实数 的值;

3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 .

撰稿:程晓杰 审稿:宋庆

高一数学教案10

教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。 幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数 。

组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。

学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。

教学目标:

㈠知识和技能

1、了解幂函数的概念,会画幂函数 ,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。

2、了解几个常见的幂函数的性质。

㈡过程与方法

1、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

2、使学生进一步体会数形结合的思想。

㈢情感、态度与价值观

1、通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。

2、利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。 教学重点 常见幂函数的概念和性质 教学难点 幂函数的'单调性与幂指数的关系

教学过程

一、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。

问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。

问题4:如果正方形场地面积为S,那么正方形的边长xx,这里a是S的函数

问题5:如果某人xxs内骑车行进了xxkm,那么他骑车的速度,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

(一)幂函数的概念如果设变量为,函数值为xx,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?xx幂函数的定义:一般地,我们把形如xx的函数称为幂函数(power function),其中xx是自变量,xx是常数。

【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)

结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数

试一试:判断下列函数那些是幂函数(1)(2)(3)(4)我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质)

(二)几个常见幂函数的图象和性质 在初中我们已经学习了幂函数x的图象和性质,请同学们在同一坐标系中画出它们的图象。根据你的学习经历,你能在同一坐标系内画出函数x的图象吗?

【探究二】观察函数x的图象,将你发现的结论写在下表内。定义域,值域,奇偶性,单调性,定点,图象范围

【探究三】根据上表的内容并结合图象,试总结函数:x的共同性质。

(1)函数x的图象都过点

(2)函数x在x上单调递增;

归纳:幂函数x图象的基本特征是,当x是,图象过点x,且在第一象限随x的增大而上升,函数在区间x上是单调增函数。(演示几何画板制作课件:幂函数。asp)

请同学们模仿我们探究幂函数x图象的基本特征x的情况探讨x时幂函数x图象的基本特征。(利用drawtools软件作图研究)

归纳:xx时幂函数x图象的基本特征:过点x,且在第一象限随x的增大而下降,函数在区间x上是单调减函数,且向右无限接近X轴,向上无限接近Y轴。

(三)例题剖析

【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。(1) (2) (3)

分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?

方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。

(1)若函数解析式中含有分母,分母不能为0;

(2)若函数解析式中含有根号,要注意偶次根号下非负;

(3)0的0次幂没有意义;

(4)若函数解析式中含有对数式,要注意对数的真数大于0;求函数的定义域的本质是解不等式或不等式组。

结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系)

【例2】比较下列各组数中两个值的大小(在横线上填上“<”或“>”)

(1)________

(2)________

(3)__________

(4)____________

分析:利用考察其相对应的幂函数和指数函数来比较大小

三、课堂小结

1、幂函数的概念及其指数函数表达式的区别

2、常见幂函数的图象和幂函数的性质。

四、布置作业

㈠课本第73页习题2.4

第1、2、3题

㈡思考题:根据下列条件对于幂函数x的有关性质的叙述,分别指出幂函数x的图象具有下列特点之一时的x的值,其中:

(1)图象过原点,且随x的增大而上升;

(2)图象不过原点,不与坐标轴相交,且随x的增大而下降;

(3)图象关于x轴对称,且与坐标轴相交;

(4)图象关于x轴对称,但不与坐标轴相交;

(5)图象关于原点对称,且过原点;

(6)图象关于原点对称,但不过原点;

检测与反馈

1、下列函数中,是幂函数的是( )

A、 B、 C、 D、

2、下列结论正确的是( )

A、幂函数的图象一定过原点

B、当xx时,幂函数x是减函数

C、当xx时,幂函数x是增函数

D、函数 既是二次函数,也是幂函数

3、下列函数中,在 是增函数的是( )

A、 B、 C、 D、

4、函数 的图象大致是( )

5、已知某幂函数的图象经过点 ,则这个函数的解析式为_______________________

6、写出下列函数的定义域,并指出它们的单调性:

同伴评 (优、良、中、须努力)

自 评 (优、良、中、须努力)

教师评 (优、良、中、须努力)

高一数学教案11

一、教材分析

本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

(三)高中用导数工具研究函数的单调性和最值。

1、有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2、不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。

1、知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2、过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

3、情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的`把握,使学生通过表面的语言描述抓住概念的精髓。

2、教学难点:

第一:从实际问题中提炼出抽象的概念;

第二:符号“y=f(x)”的含义的理解。

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1、教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2、学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案12

【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!

本文题目:空间几何体的三视图和直观图高一数学教案

第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图

教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.

教学重点:画出三视图、识别三视图.

教学难点:识别三视图所表示的空间几何体.

教学过程:

一、新课导入:

1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.

三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.

用途:工程建设、机械制造、日常生活.

二、讲授新课:

1. 教学中心投影与平行投影:

① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.

③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.

讨论:点、线、三角形在平行投影后的结果.

2. 教学柱、锥、台、球的三视图:

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图

讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高

结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的`各种结果. 正视图、侧视图、俯视图.

③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (

④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.

(试变化以上的三视图,说出相应几何体的摆放)

3. 教学简单组合体的三视图:

① 画出教材P16 图(2)、(3)、(4)的三视图.

② 从教材P16思考中三视图,说出几何体.

4. 练习:

① 画出正四棱锥的三视图.

画出右图所示几何体的三视图.

③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.

5. 小结:投影法;三视图;顺与逆

三、巩固练习: 练习:教材P17 1、2、3、4

第二课时 1.2.3 空间几何体的直观图

教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.

教学重点:画出直观图.

高一数学教案13

学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!

教学目标

1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

教学建议

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

(4)由数列的'前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

上述提供的高一数学教案:数列希望能够符合大家的实际需要!

高一数学教案14

一、教学目标

1.知识与技能

(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;

(2)体会程序化解决问题的思想,为算法的学习作准备。

2.过程与方法

(1)让学生在求解方程近似解的实例中感知二分发思想;

(2)让学生归纳整理本节所学的知识。

3.情感、态度与价值观

①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;

②培养学生认真、耐心、严谨的数学品质。

二、 教学重点、难点

重点:用二分法求解函数f(x)的零点近似值的步骤。

难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?

三、 学法与教学用具

1.想-想。

2.教学用具:计算器。

四、教学设想

(一)、创设情景,揭示课题

提出问题:

(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?

(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?

(二)、研讨新知

一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的.要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。

取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;

再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;

由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。

这种求零点近似值的方法叫做二分法。

1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.

生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。

2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?

先由学生思考几分钟,然后作如下说明:

设函数零点为x0,则a<x0<b,则:

0<x0-a<b-a,a-b<x0-b<0;

由于︱a - b ︳<,所以

︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

即a或b 作为零点x0的近似值都达到了给定的精确度。

 (三)、巩固深化,发展思维

1.学生在老师引导启发下完成下面的例题

例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)

问题:原方程的近似解和哪个函数的零点是等价的?

师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。

生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.

(四)、归纳整理,整体认识

在师生的互动中,让学生了解或体会下列问题:

(1)本节我们学过哪些知识内容?

(2)你认为学习“二分法”有什么意义?

(3)在本节课的学习过程中,还有哪些不明白的地方?

(五)、布置作业

P92习题3.1A组第四题,第五题。

高一数学教案15

1、知识与技能

(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

(2)理解任意角的三角函数不同的定义方法;

(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

(4)掌握并能初步运用公式一;

(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.

2、过程与方法

初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.

3、情态与价值

任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的`坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.

本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.

教学重难点

重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.