范文网 >教案大全 >数学教案 >八年级数学教案

八年级数学教案

何必等 分享更新时间:
投诉

关于八年级数学教案范文集合9篇

作为一位兢兢业业的人民教师,编写教案是必不可少的,借助教案可以更好地组织教学活动。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的八年级数学教案9篇,仅供参考,大家一起来看看吧。

八年级数学教案 篇1

教学目标:

1.知道负整数指数幂=(a≠0,n是正整数).

2.掌握整数指数幂的运算性质.

3.会用科学计数法表示小于1的数.

教学重点:

掌握整数指数幂的运算性质.

难点:

会用科学计数法表示小于1的数.

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.

教学过程:

一、课堂引入

1.回忆正整数指数幂的运算性质: (1)同底数的.幂的乘法:am?an = am+n (m,n是正整数); (2)幂的乘方:(am)n = amn (m,n是正整数); (3)积的乘方:(ab)n = anbn (n是正整数); (4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n); (5)商的乘方:()n = (n是正整数);

2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

3.你还记得1纳米=10?9米,即1纳米=米吗?

4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的.

三、科学记数法: 我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数. 启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级数学教案 篇2

教学任务分析

教学目标

知识技能

一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

数学思考

在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

解决问题

一、会进行同分母和异分母分式的加减运算.

二、会解决与分式的加减有关的简单实际问题.

三、能进行分式的加、剪、乘、除、乘方的混合运算.

情感态度

通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

重点

分式的加减法.

难点

异分母分式的加减法及简单的分式混合运算.

教学流程安排

活动流程图

活动内容和目的

活动1:问题引入

活动2:学习同分母分式的加减

活动3:探究异分母分式的加减

活动4:发现分式加减运算法则

活动5:巩固练习、总结、作业

向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

通过练习、作业进一步巩固分式的运算.

课前准备

教具

学具

补充材料

课件

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

1.问题一:比较电脑与手抄的录入时间.

2.问题二;帮帮小明算算时间

所需时间为,

如何求出的值?

3.这里用到了分式的'加减,提出本节课的主题.

教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

分式如何进行加减?

通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

[活动2]

1.提出小学数学中一道简单的分数加法题目.

2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

3.教师使用课件展示[例1]

4.教师通过课件出两个小练习.

教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

学生在教师的引导下,探索同分母分式加减的运算方法.

通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

由两个学生板书自主完成练习,教师巡视指导学生练习.

运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

让学生进一步体会同分母分式的加减运算.

[活动3]

1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

2.教师提出思考题:

异分母的分式加减法要遵守什么法则呢?

教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

[活动4]

1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

2.教师使用课件展示[例2]

3.教师通过课件出4个小练习.

4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

试用含有R1的式子表示总电阻R

5.教师使用课件展示[例4]

教师提出要求,由学生说出分式加减法则的字母表示形式.

通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

让学生体会运用的公式解决问题的过程.

锻炼学生运用法则解决问题的能力,既准确又有速度.

提高学生的计算能力.

通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

提高学生综合应用知识的能力.

[活动5]

1.教师通过课件出2个分式混合运算的小练习.

2.总结:

a)这节课我们学习了哪些知识?你能说一说吗?

b)⑴方法思路;

c)⑵计算中的主意事项;

d)⑶结果要化简.

3.作业:

a)教科书习题16.2第4、5、6题.

学生练习、巩固.

教师巡视指导.

学生完成、交流.,师生评价.

教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

教师布置作业.

锻炼学生运用法则进行运算的能力,提高准确性及速度.

提高学生归纳总结的能力.

八年级数学教案 篇3

11.1 与三角形有关的线段

11.1.1 三角形的边

1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)

2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)

3.三角形在实际生活中的应用.(难点)

一、情境导入

出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.

教师利用多媒体演示三角形的形成过程,让学生观察.

问:你能不能给三角形下一个完整的定义?

二、合作探究

探究点一:三角形的概念

图中的锐角三角形有( )

A.2个

B.3个

C.4个

D.5个

解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的`个数有2+1=3(个).故选B.

方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.

探究点二:三角形的三边关系

【类型一】 判定三条线段能否组成三角形

以下列各组线段为边,能组成三角形的是( )

A.2c,3c,5c

B.5c,6c,10c

C.1c,1c,3c

D.3c,4c,9c

解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.

方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.

【类型二】 判断三角形边的取值范围

一个三角形的三边长分别为4,7,x,那么x的取值范围是( )

A.3<x<11 B.4<x<7

C.-3<x<11 D.x>3

解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.

方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.

【类型三】 等腰三角形的三边关系

已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.

解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.

解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.

方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.

【类型四】 三角形三边关系与绝对值的综合

若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.

解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.

解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.

三、板书设计

三角形的边

1.三角形的概念:

由不在同一直线上的三条线段首尾顺次相接所组成的图形.

2.三角形的三边关系:

两边之和大于第三边,两边之差小于第三边.

本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.

八年级数学教案 篇4

一、教学目标

1.灵活应用勾股定理及逆定理解决实际问题.

2.进一步加深性质定理与判定定理之间关系的认识.

二、重点、难点

1.重点:灵活应用勾股定理及逆定理解决实际问题.

2.难点:灵活应用勾股定理及逆定理解决实际问题.

3.难点的突破方法:

三、课堂引入

创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.

四、例习题分析

例1(P83例2)

分析:⑴了解方位角,及方位名词;

⑵依题意画出图形;

⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR—∠QPS=45°.

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.

分析:⑴若判断三角形的.形状,先求三角形的三边长;

⑵设未知数列方程,求出三角形的三边长5、12、13;

⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.

解略.

本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.

八年级数学教案 篇5

知识结构:

重点与难点分析:

本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的.思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

(3)总结,形成知识结构

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

一.教学目标:

1.使学生掌握等腰三角形的判定定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征.

二.教学重点:等腰三角形的判定定理

三.教学难点:性质与判定的区别

四.教学用具:直尺,微机

五.教学方法:以学生为主体的讨论探索法

六.教学过程:

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.

2.推论1:三个角都相等的三角形是等边三角形.

推论2:有一个角等于60°的等腰三角形是等边三角形.

要让学生自己推证这两条推论.

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可.

补充例题:(投影展示)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在 中, (已知)

(等边对等角)

(已知)

(等教对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

证明: DE//BC(已知)

BE=DE,同理DF=CF.

EF=DE-DF

EF=BE-CF

小结:

(1)等腰三角形判定定理及推论.

(2)等腰三角形和等边三角形的证法.

七.练习

教材 P.75中1、2、3.

八.作业

教材 P.83 中 1.1)、2)、3);2、3、4、5.

九.板书设计

八年级数学教案 篇6

教学目标

一、教学知识点:

1.旋转的定义.2.旋转的基本性质.

二、能力训练要求:

1.通过具体实例认识旋转,理解旋转的基本涵义.

2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

三、情感与价值观要求

1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.

教学重点:旋转的基本性质.

教学难点:探索旋转的基本性质.

教学方法:

1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

2、采用多媒体课件辅助教学。

教学过程:

一.巧设情景问题,引入课题

日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

1.在这些转动的现象中,它们都是绕着一个点转动的.

2.每个物体的转动都是向同一个方向转动.

3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.

4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.

二.讲授新课

在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.

议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.

(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的`位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.

看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.

因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.

由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.

[例1](课本68页例1)

[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.

解:(见课本68页)

书上68页做一做

三.课堂练习

课本P69随堂练习.

1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.

四.课时小结

五.课后作业:课本P69习题3.4 1、2、3.

六.活动与探究

1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

结果:旋转现象为:

整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.

整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.

整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.

2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.

结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.

整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.

板书设计:

教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。

八年级数学教案 篇7

复习第一步::

勾股定理的有关计算

例1:(20xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.

析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6

勾股定理解实际问题

例2.(20xx年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.

析解:彩旗自然下垂的长度就是矩形DCEF

的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,

得DE=h=220-150=70(cm)

所以彩旗下垂时的最低处离地面的最小高度h为70cm

与展开图有关的计算

例3、(20xx年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.

在矩形ACC’A’中,因为AC=2,CC’=1

所以由勾股定理得AC’=.

∴从顶点A到顶点C’的.最短距离为

复习第二步:

1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.

例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.

错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.

正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2

例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是

错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25

剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.

正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.

温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.

例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.

错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形

八年级数学教案 篇8

一、教学目标:

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

二、重点、难点和难点的突破方法

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点.

三、课堂引入:

下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法.

经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度.

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的`折线图.

观察一下,它们有区别吗?说说你观察得到的结果.

用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).

四、例习题分析

本节课在教材中没有相应的例题,教材P152习题分析

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

八年级数学教案 篇9

教学目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:动手实践、讨论。

教学工具:课件

教学过程:

一、 先复习轴对称图形的'定义,以及轴对称的相关的性质:

1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________

2.轴对称的三个重要性质______________________________________________

_____________________________________________________________________

二、提出问题:

二、探索练习:

1. 提出问题:

如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

你能画出这个图案的另一半吗?

吸引学生让学生有一种解决难点的想法。

2.分析问题:

分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:`

在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:

1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

2. 试画出与线段AB关于直线L的线段

3.如图,已知 直线MN,画出以MN为对称轴 的轴对称图形

小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高