范文网 >教案大全 >数学教案 >八年级数学教案

八年级数学教案

杯与酒 分享更新时间:
投诉

精选八年级数学教案范文8篇

作为一名教学工作者,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?下面是小编收集整理的八年级数学教案8篇,欢迎大家分享。

八年级数学教案 篇1

一、创设情境

1.一次函数的图象是什么,如何简便地画出一次函数的图象?

(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

二、探究归纳

1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的`交点坐标是(0,b),与x轴的交点坐标是.

三、实践应用

例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

八年级数学教案 篇2

知识技能

1.了解两个图形成轴对称性的性质,了解轴对称图形的性质。

2.探究线段垂直平分线的性质。

过程方法

1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。

2.探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。

情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。

教学重点

1.轴对称的性质。

2.线段垂直平分线的性质。

教学难点体验轴对称的特征。

教学方法和手段多媒体教学

过程教学内容

引入中垂线概念

引出图形对称的性质第一张幻灯片

上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的`性质。

幻灯片二

1、图中的对称点有哪些?

2、点A和A的连线与直线MN有什么样的关系?

理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。

八年级数学教案 篇3

教学指导思想与理论依据

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。” 教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

教学内容分析:

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

学生情况分析:

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

教学方式与教学手段说明:

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的`机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

知识与技能:

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

过程与方法:

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

情感与价值观:

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室

教学课型:

试验探究式

教学重点:

特殊四边形性质

教学难点:

特殊四边形性质的发现

一、设置情景,提出问题

提出问题:

知识已生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示)?

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)

二、整体了解,形成系统

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?如果没有,为什么?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形

2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑;

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图: 学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)

三、个体研究、总结性质

1、平行四边形性质

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动B点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过AO=CO 、BO=DO,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……

指导学生填表:

平行四边形性质矩形性质正方形性质

菱形性质

梯形性质等腰梯形性质

直角梯形性质

(既属于平行四边形性质又属于矩形性质可以画箭头)

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图: 学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)

教师总结:

(意图: 掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)

四、联系生活,解决问题

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)

五、小结

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

学习效果评价

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

学生演示开(关)门过程中,了解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦;

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学教案 篇4

教学目标:

1、 理解运用平方差公式分解因式的方法。

2、 掌握提公因式法和平方差公式分解因式的综合运用。

3、 进一步培养学生综合、分析数学问题的能力。

教学重点:

运用平方差公式分解因式。

教学难点:

高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:

我们数学组的观课议课主题:

1、关注学生的合作交流

2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:

1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

①-x2+y2 ②-x2-y2 ③4-9x2

④ (x+y)2-(x-y)2 ⑤ a4-b4

3、试总结运用平方差公式因式分解的条件是什么?

4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

5、试总结因式分解的步骤是什么?

师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)

生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5: a4-b4可分解为(a2+b2)(a2-b2)

生6:不对,a2-b2 还能继续分解为a+b)(a-b)

师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的.条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

(2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

八年级数学教案 篇5

一、教学目标

1.使学生理解并掌握分式的概念,了解有理式的概念;

2.使学生能够求出分式有意义的条件;

3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

二、重点、难点、疑点及解决办法

1.教学重点和难点 明确分式的分母不为零.

2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

三、教学过程

【新课引入】

前面所研究的因式分解问题是把整式分解成若干个因式的积的.问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

【新课】

1.分式的定义

(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

(2)由学生举几个分式的例子.

(3)学生小结分式的概念中应注意的问题.

①分母中含有字母.

②如同分数一样,分式的分母不能为零.

(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

2.有理式的分类

请学生类比有理数的分类为有理式分类:

例1 当取何值时,下列分式有意义?

(1);

解:由分母得.

∴当时,原分式有意义.

(2);

解:由分母得.

∴当时,原分式有意义.

(3);

解:∵恒成立,

∴取一切实数时,原分式都有意义.

(4).

解:由分母得.

∴当且时,原分式有意义.

思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

例2 当取何值时,下列分式的值为零?

(1);

解:由分子得.

而当时,分母.

∴当时,原分式值为零.

小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

(2);

解:由分子得.

而当时,分母,分式无意义.

当时,分母.

∴当时,原分式值为零.

(3);

解:由分子得.

而当时,分母.

当时,分母.

∴当或时,原分式值都为零.

(4).

解:由分子得.

而当时,,分式无意义.

∴没有使原分式的值为零的的值,即原分式值不可能为零.

(四)总结、扩展

1.分式与分数的区别.

2.分式何时有意义?

3.分式何时值为零?

(五)随堂练习

1.填空题:

(1)当时,分式的值为零

(2)当时,分式的值为零

(3)当时,分式的值为零

2.教材P55中1、2、3.

八、布置作业

教材P56中A组3、4;B组(1)、(2)、(3).

九、板书设计

课题 例1

1.定义例2

2.有理式分类

八年级数学教案 篇6

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的.一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

(二)重点、难点

一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

(三)教学目标

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

八年级数学教案 篇7

总课时:7课时 使用人:

备课时间:第八周 上课时间:第十周

第4课时:5、2平面直角坐标系(2)

教学目标

知识与技能

1.在给定的直角坐标系下,会根据坐标描出点的位置;

2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。

过程与方法

1.经历画坐标 系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作 交流能力;

2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。

情感态度与价值观

通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。

教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学过程

第一环节 感 受生活中的情境,导入新课(10分钟,学生自己绘图找点)

在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点 的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的.点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。

练习:指出下列 各点以及所在象限或坐标轴:

A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取学生作答)

由点找坐标是已知点在直角坐标 系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让 你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

第二环节 分类讨论,探索新知.(15分钟,小组讨论,全班交流)

1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

(-9,3),(-9,0),(-3,0),( -3,3)

( 学生操作完毕后)

2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

观察所得的图形,你觉得它像什么?

分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?

(出示学生的作品)画出是 这样的吗?这幅图画很美,你们觉得它像什么?

这个图形像一栋房子旁边还有一棵大树。

3.做一做

(出示投影)

在书上已建立的直角坐标系画,要求每位同学独立完成。

(学生描点、画图)

(拿出一位做对的学生的作品投影)

你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?

(像猫脸)

第三环节 学有所用.(10分钟,先独立完成,后小组讨论)

(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。

(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

(2)(0,0),(4,-3),(8,0),(4,3),(0,0);

(3)(2,0)

观察所得的图形,你觉得它像什么?(像移动的菱形)

2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。

先独立完成,然后小组讨论是否正确。

第四环节 感悟与收获(5分钟,学生总结,全班交流)

本节课在复习上节课的基础上,通过找点、连 线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。

在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。

第五环节 布置作业

习题5、4

A组(优等生)1、2、3

B组(中等生)1、2

C组(后三分之一生)1、2

八年级数学教案 篇8

复习第一步::

勾股定理的有关计算

例1:(20xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.

析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6

勾股定理解实际问题

例2.(20xx年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.

析解:彩旗自然下垂的长度就是矩形DCEF

的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,

得DE=h=220-150=70(cm)

所以彩旗下垂时的最低处离地面的最小高度h为70cm

与展开图有关的计算

例3、(20xx年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的.一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.

在矩形ACC’A’中,因为AC=2,CC’=1

所以由勾股定理得AC’=.

∴从顶点A到顶点C’的最短距离为

复习第二步:

1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.

例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.

错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.

正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2

例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是

错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25

剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.

正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.

温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.

例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.

错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形