范文网 >教案大全 >数学教案 >初一数学第一章教案

初一数学第一章教案

忘爱。 分享更新时间:
投诉

初一数学第一章教案

作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!下面是小编为大家收集的初一数学第一章教案,欢迎大家分享。

初一数学第一章教案1

一、知识要点

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:

1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:

(1)在直线上任取一个点表示数0,这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)

9、有理数减法法则

减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

10、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac

11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序

(1)“先乘方,再乘除,最后加减”的顺序进行;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

16、近似数(approximatenumber):

17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

拓展知识:

1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

一、(1)所有有理数组成的数集叫做有理数集;

二、(2)所有的整数组成的数集叫做整数集。

2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

4、比较两个有理数大小的方法有:

(1)根据有理数在数轴上对应的点的位置直接比较;

(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

(3)做差法:a-b>0a>b;

(4)做商法:a/b>1,b>0a>b.

二、基础训练

选择题

1、下列运算中正确的是().

A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

2、下列各判断句中错误的是()

A.数轴上原点的位置可以任意选定

B.数轴上与原点的距离等于个单位的点有两个

C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示

D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。

3、、是有理数,若>且,下列说法正确的是()

A.一定是正数B.一定是负数C.一定是正数D.一定是负数

4、两数相加,如果比每个加数都小,那么这两个数是()

A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数

5、两个非零有理数的和为零,则它们的商是()

A.0B.-1C.+1D.不能确定

6、一个数和它的倒数相等,则这个数是()

A.1B.-1C.±1D.±1和0

7、如果|a|=-a,下列成立的是()

A.a>0B.a<0c.a>0或a=0D.a<0或a=0

8、(-2)11+(-2)10的值是()

A.-2B.(-2)21C.0D.-210

9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()

A.3瓶B.4瓶C.5瓶D.6瓶

10、在下列说法中,正确的个数是()

⑴任何一个有理数都可以用数轴上的一个点来表示

⑵数轴上的每一个点都表示一个有理数

⑶任何有理数的绝对值都不可能是负数

⑷每个有理数都有相反数

A、1B、2C、3D、4

11、如果一个数的相反数比它本身大,那么这个数为()

A、正数B、负数

C、整数D、不等于零的有理数

12、下列说法正确的是()

A、几个有理数相乘,当因数有奇数个时,积为负;

B、几个有理数相乘,当正因数有奇数个时,积为负;

C、几个有理数相乘,当负因数有奇数个时,积为负;

D、几个有理数相乘,当积为负数时,负因数有奇数个;

填空题

1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。

2、一般地,设a是一个正数,则数轴上表示数a的.点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.

4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.

5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.

6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.

7、1-2+3-4+5-6+……+20xx-2002的值是____________.

8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.

10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。

11、正数–a的绝对值为__________;负数–b的绝对值为________

12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大

13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)

14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

三、强化训练

1、计算:1+2+3+…+20xx+2003=__________.

2、已知:若(a,b均为整数)则a+b=

3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来

4、已知,则___________

5、已知是整数,是一个偶数,则a是(奇,偶)

6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。

9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。

10、已知|x+1|=4,(y+2)2=4,求x+y的值。

11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。

例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):

星期一二三四五

每股涨跌+4+4.5-1-2.5-6

第1章(1)星期三收盘时,每股是多少元?

第2章(2)本周内最高价是每股多少元?最低价是多少元?

第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?

第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。

四、竞赛训练:

1、最小的非负有理数与最大的非正有理数的和是

2、乘积=

3、比较大小:A=,B=,则A B

4、满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值是( )

A、9 B、8 C、7 D、6

5、最小的一位数的质数与最小的两位数的质数的积是( )

A、11 B、22 C、26 D、33

6、比较

7、计算:

8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

9、计算:

10、计算

11、计算1+3+5+7+…+1997+1999的值

12、计算1+5+52+53+…+599+5100的值.

13、有理数均不为0,且设试求代数式20xx之值。

14、已知a、b、c为实数,且,求的值。

15、已知:。

16、解方程组。

17、若a、b、c为整数,且,求的值。

1.2.1有理数

七年级上(1.1正数和负数,1.2有理数)

1.2有理数

初一数学第一章教案2

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得

1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授:

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得。

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的'“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业 。

教科书第3页,习题6.1第1、3题。