范文网 >教案大全 >数学教案 >人教版六年级下册数学教案

人教版六年级下册数学教案

思君 分享更新时间:
投诉

关于人教版六年级下册数学教案范文合集六篇

作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?以下是小编为大家收集的人教版六年级下册数学教案6篇,仅供参考,欢迎大家阅读。

人教版六年级下册数学教案 篇1

课前准备

教师准备 PPT课件

教学过程

⊙谈话揭题

上节课,我们从意义、读法、写法、大小比较、改写以及省略尾数保留近似数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)

⊙回顾与整理

1.小数的意义。

过渡:同学们,在生活中我们常常遇到不能用整数表示物体个数的时候,例如:我吃了半个苹果,做一件上衣要用一米半的布料……提问:半个、一米半怎样来表示呢?谁来说说小数的意义?

预设

生1:半个可以用0.5来表示,一米半可以用1.5来表示。

生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。

2.小数的数位顺序表。

师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?

(课件出示数位顺序表,小数部分留白。指名回答,师填充)

3.小数的读法和写法。

(1)师:怎样读小数?怎样写小数?

预设

生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的.数字。

生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

(2)写小数时需要注意什么?

(空位用“0”补足)

4.小数的分类。

(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?

预设

生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。

(2)谁能举例说明什么是有限小数?什么是无限小数?

预设

生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。

生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。

(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?

预设

生:无限小数可以分为无限不循环小数和循环小数。

(4)关于无限不循环小数和循环小数,你都了解哪些知识?

预设

生1:一个数的小数部分,数字排列没有规律且位数无限,这样的小数叫做无限不循环小数。例如:π

生2:一个数的小数部分从某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555… 0.0333… 17.109109…

生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。

5.小数的性质。

(1)师:谁能说说小数有怎样的性质?

预设

生:在小数的末尾添上0或者去掉0,小数的大小不变。

(2)理解小数的性质时,应该注意什么?

(提示:要注意是“小数的末尾”,而不是“小数点的后面”)

6.小数点位置的变化。

人教版六年级下册数学教案 篇2

教学内容:

人教版小学数学教材六年级下册第107~108页例2及相关练习。

教学目标:

1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

重点难点:

探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

教学准备:

教学课件。

教学过程:

一、直接导入,揭示课题

同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

二、探索发现,学习新知

(一)教师与学生比赛算题

1.教师:你知道等于多少吗?(学生:)

教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的.语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

(二)借助正方形探究计算方法

1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

2.进行演示讲解。

(1)演示:用一个正方形表示1,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

人教版六年级下册数学教案 篇3

课前准备

教师准备 PPT课件

教学过程

⊙提问导入

1.提问激趣。

根据“甲是乙的”,你能想到什么?

预设

生1:乙是甲的。

生2:甲比乙少,乙比甲多。

生3:甲是甲、乙之差的5倍。

生4:甲是甲、乙之和的。

生5:乙比甲多20%。

……

2.导入新课。

这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

⊙回顾与整理

1.分数(百分数)的`一般应用题。

(1)分数(百分数)乘法应用题的特征及解题关键各是什么?

①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

(2)分数(百分数)除法应用题的特征及解题关键各是什么?

①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

(3)分数(百分数)应用题的常见题型有哪些?如何解答?

①求甲是乙的几分之几(百分之几):甲÷乙。

②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

③已知甲比乙多(少)几分之几,求甲:乙×。

④已知甲比乙多(少)几分之几,求乙:甲÷。

⑤求百分率。

发芽率=×100%

小麦的出粉率=×100%

产品的合格率=×100%

出勤率=×100%

⑥求利息:利息=本金×利率×时间

2.分数应用题的特例——工程问题。

(1)什么是工程问题?

明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

(2)解决工程问题的关键是什么?

明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

(3)工程问题的数量关系式有哪些?

预设

生1:工作总量=工作效率×工作时间

生2:工作效率=工作总量÷工作时间

生3:工作时间=工作总量÷工作效率

生4:合作时间=工作总量÷工作效率和

人教版六年级下册数学教案 篇4

教学目标

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点、难点

1、圆柱体积计算公式的推导过程并能正确应用。

2、借助教具演示,弄清圆柱与长方体的关系。

教具、学具准备

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想

《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

教学过程

一、创设情境,激疑引入

“水是生命之源!”节约用水是我们每个公民应尽的.义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报:

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中……

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形……

生3:说明圆柱和我们学过的圆和长方形有联系

师:请同学们想想圆柱的体积与什么有关?

生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

(3)学生小组汇报交流:

近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

教师根据学生汇报报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式:

长方体的体积 = 底面积 × 高

↓ ↓ ↓

圆柱的体积 = 底面积 × 高

用字母表示计算公式V= sh

设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践

人教版六年级下册数学教案 篇5

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

(二)核心能力

经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(三)学习目标

1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(四)学习重点

了解简单的鸽巢问题,理解“总有”和“至少”的含义。

(五)学习难点

运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.谈话导入

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

2.问题探究

(1)呈现问题,引出探究

出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

师:“总有”是什么意思?“至少”有2支是什么意思?

学生自由发言。

预设:一定有

不少于两只,可能是2支,也可能是多于2支。

就是不能少于2支。

(2)体验探究,建立模型

师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

小组活动:学生思考,摆放。

①枚举法

师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

(不一定,也可能放在其它笔筒里。)

师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

师:这种放法可以记作(3,1,0)

师:这3支铅笔一定要放在第一个笔筒里吗?

(不一定)

师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

预设4:还可以(2,1,1)

或者(1,1,2)、(1,2,1)

师:还有其它的放法吗?

(没有了)

师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

师:这几种放法如果用一句话概括可以怎样说?

(装得最多的笔筒里至少装2支。)

师:装得最多的那个笔筒一定是第一个笔筒吗?

(不一定,哪个笔筒都有可能。)

【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

②假设法

师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

师:“平均放”是什么意思?

预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

师:为什么要先平均分?

学生自由发言。

引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

(3)提升思维,建立模型

①加深感悟

师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:把7支笔放进6个笔筒里呢?还用摆吗?

学生自由发言。

师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

师:你发现了什么?

预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:你的'发现和他一样吗?

学生自由发言。

师:你们太了不起了!

师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

练一练:

师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

师:说说你的想法。

师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

介绍狄利克雷:

师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

②建立模型

出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

学生独立思考、讨论后汇报:

师:怎样用算式表示我们的想法呢?生答,板书如下。

7÷3=2本……1本(2+1=3)

师:如果有10本书会怎么样能?会用算式表示吗?写下来。

出示:

把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

10÷3=3本……1本(3+1=4)

师:观察板书你有什么发现?

预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

学生讨论,汇报:

8÷3=2……22+1=3

8÷3=2……22+2=4

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

预设:我认为根“商”有关,只要用“商+1”就可以得到。

师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

3.巩固练习

(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

(2)第69页的做一做第1、2题。

4.全课总结

师:通过这节的学习,你有什么收获?

小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

(三)课时作业

1.一个小组共有13名同学,其中至少有几名同学同一个月出生?

答案:2名。

解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

答案:8名。

解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

第二课时鸽巢原理

中原区汝河新区小学师芳

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

(二)核心能力

在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

(三)学习目标

1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

(四)学习重点

引导学生把具体问题转化为“抽屉原理”。

(五)学习难点

找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.情境导入

师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

师:神奇吧!你们想不想表演一个呢?

师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

2.探究新知

(1)学习例3

①猜想

出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

预设:2个、3个、5个…

②验证

师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

可以用表格进行整理,课件出示空白表格:

学生独立思考填表,小组交流。

全班汇报。

汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

课件汇总,思考:从这里你能发现什么?

教师:通过验证,说说你们得出什么结论。

小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

③小结

师:为什么球的个数一定要比抽屉数多?而且是多1呢?

预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

(2)引导学生把具体问题转化成“抽屉原理”。

师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

思考:①摸球问题与“抽屉原理”有怎样的联系?

②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

3.巩固练习

(1)完成教材第70页“做一做”第1题。

(2)完成教材第70页“做一做”第2题。

4.课堂总结

师:这节课你学到了什么知识?谈谈你的收获和体验。

(三)课时作业

1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

答案:5只。

解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

答案:16条。

解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

人教版六年级下册数学教案 篇6

【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。

【教学目标】

1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

2、能按一定的比,将一些简单图形进行放大或缩小。

【教学重点】图形的放大与缩小。

【教学难点】按一定的比把图形放大或缩小。

【教学准备】多媒体

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50c:40=50c:4000c=1:80

(3)你是怎么想的`?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000c=50

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

三、巩固练习

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获 畅谈感想

这节课,你有什么收获?听课随想