八年级数学教案
八年级数学教案范文合集七篇
作为一名无私奉献的老师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。如何把教案做到重点突出呢?下面是小编整理的八年级数学教案7篇,仅供参考,欢迎大家阅读。
八年级数学教案 篇1
一、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
二、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;(×)
(2)有四个角是直角的四边形是矩形;(√)
(3)四个角都相等的四边形是矩形;(√)
(4)对角线相等的四边形是矩形;(×)
(5)对角线相等且互相垂直的四边形是矩形;(×)
(6)对角线互相平分且相等的四边形是矩形;(√)
(7)对角线相等,且有一个角是直角的四边形是矩形;(×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的.面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵ 四边形ABCD是平行四边形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(对角线相等的平行四边形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明
八年级数学教案 篇2
单元(章)主题第三章 直棱柱任课教师与班级
本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时
教学目标(含重点、难点)及
设置依据教学目标
1、了解多面体、直棱柱的有关概念.
2、会认直棱柱的侧棱、侧面、底面.
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.
教学重点与难点
教学重点:直棱柱的有关概念.
教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.
教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型
教 学 过 程
内容与环节预设、简明设计意图二度备课(即时反思与纠正)
一、创设情景,引入新课
师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知
1.多面体、棱、顶点概念:
师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?
析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的'顶点
2.合作交流
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描
述其特征。)
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的相邻两条侧棱互相平行且相等。
4.学以至用
出示例题。(先请学生单独考虑,再作讲解)
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)
最后完成例题中的“想一想”
5.巩固练习(学生练习)
完成“课内练习”
三、小结回顾,反思提高
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计
作业布置或设计作业本及课时特训
八年级数学教案 篇3
11.1 与三角形有关的线段
11.1.1 三角形的边
1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)
2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)
3.三角形在实际生活中的应用.(难点)
一、情境导入
出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.
教师利用多媒体演示三角形的形成过程,让学生观察.
问:你能不能给三角形下一个完整的定义?
二、合作探究
探究点一:三角形的概念
图中的锐角三角形有( )
A.2个
B.3个
C.4个
D.5个
解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.
方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.
探究点二:三角形的三边关系
【类型一】 判定三条线段能否组成三角形
以下列各组线段为边,能组成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.
方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.
【类型二】 判断三角形边的取值范围
一个三角形的三边长分别为4,7,x,那么x的取值范围是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.
方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.
【类型三】 等腰三角形的三边关系
已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.
解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.
解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.
方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.
【类型四】 三角形三边关系与绝对值的综合
若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.
解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的.正负,然后进行化简.
三、板书设计
三角形的边
1.三角形的概念:
由不在同一直线上的三条线段首尾顺次相接所组成的图形.
2.三角形的三边关系:
两边之和大于第三边,两边之差小于第三边.
本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.
八年级数学教案 篇4
知识要点
1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,
相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。
2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.
3、正比例函数y=kx的性质
(1)、正比例函数y=kx的图象都经过
原点(0,0),(1,k)两点的一条直线;
(2)、当k0时,图象都经过一、三象限;
当k0时,图象都经过二、四象限
(3)、当k0时,y随x的增大而增大;
当k0时,y随x的增大而减小。
4、一次函数y=kx+b的性质
(1)、经过特殊点:与x轴的交点坐标是 ,
与y轴的交点坐标是 .
(2)、当k0时,y随x的增大而增大
当k0时,y随x的增大而减小
(3)、k值相同,图象是互相平行
(4)、b值相同,图象相交于同一点(0,b)
(5)、影响图象的两个因素是k和b
①k的正负决定直线的方向
②b的正负决定y轴交点在原点上方或下方
5.五种类型一次函数解析式的确定
确定一次函数的解析式,是一次函数学习的重要内容。
(1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式
例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
解:把点(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函数的解析式为:y=3x-12
(2)、根据直线经过两个点的坐标,确定函数的解析式
例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
求函数的表达式。
解:把点A(3,4)、点B(2,7)代入y=kx+b,得
,解得:
函数的解析式为:y=-3x+13
(3)、根据函数的图像,确定函数的解析式
例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x
(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x
(小时)之间的函数关系式,并且确定自变量x的取值范围。
(4)、根据平移规律,确定函数的解析式
例4、如图2,将直线 向上平移1个单位,得到一个一次
函数的图像,那么这个一次函数的解析式是 .
解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位
后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,
得 ,解得: ,函数的解析式为:y=2x+1
(5)、根据直线的对称性,确定函数的解析式
例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。
例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。
例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。
经典训练:
训练1:
1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。
(1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?
(2)若y是x的函数,试写出y与x之间的函数关系式 。
训练2:
1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函数有___ __;正比例函数有____________(填序号).
2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )
A.k1 B.k-1 C.k1 D.k为任意实数.
3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.
训练3:
1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.
2. 一次函数y=mx+n的.图象如图,则下面正确的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.
4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;
若y随x的增大而增大,则k__________.
5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )
训练4:
1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.
2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .
3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。
4、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。
5、已知y-1与x成正比例,且 x=-2时,y=-4.
(1)求出y与x之间的函数关系式;
(2)当x=3时,求y的值.
一、填空题(每题2分,共26分)
1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .
2、若直线 和直线 的交点坐标为 ,则 .
3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .
4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .
5、函数 ,如果 ,那么 的取值范围是 .
6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.
7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .
8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的三角形的面积为 ,则 .
9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .
10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .
11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.
12、 为 时,直线 与直线 的交点在 轴上.
13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .
二、选择题(每题3分,共36分)
14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )
15、若直线 与 的交点在 轴上,那么 等于( )
A.4 B.-4 C. D.
16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )
17、直线 如图5,则下列条件正确的是( )
18、直线 经过点 , ,则必有( )
A.
19、如果 , ,则直线 不通过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是
A. B. C. D.都不对
21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )
图6
22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )
A.4 B.5 C.6 D.7
23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
24、已知 ,那么 的图象一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )
三、解答题(1~6题每题8分,7题10分,共58分)
26、如图8,在直角坐标系内,一次函数 的图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.
27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?
28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.
(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.
(2)在同一坐标系中,画出这三个函数的图象.
29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.
(1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.
(2)小王家第一季度交纳电费情况如下:
月份 一月份 二月份 三月份 合计
交费金额 76元 63元 45元6角 184元6角
问小王家第一季度共用电多少度?
30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.
(1)求 与 之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]
31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?
32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)
路程/千米 运费(元/吨、千米)
甲库 乙库 甲库 乙库
A地 20 15 12 12
B地 25 20 10 8
(1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).
(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?
八年级数学教案 篇5
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的`。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。下列各数的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根为±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根为±0。7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P。127练习1、2、3、4。
八、板书设计
平方根
(一)概念 (四)表示方法 例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。
例1。求 的值。
解 ∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0。9,
便可依次得到精确度
为0。01,0。001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01
八年级数学教案 篇6
1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质.
矩形性质1 矩形的四个角都是直角.
矩形性质2 矩形的对角线相等.
如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的`中线等于斜边的一半.
例习题分析
例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.
解:∵ 四边形ABCD是矩形,
∴ AC与BD相等且互相平分.
∴ OA=OB.
又∠AOB=60°,
∴△OAB是等边三角形.
∴矩形的对角线长AC=BD=2OA=2×4=8(cm).
例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.
分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法
八年级数学教案 篇7
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2、通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:理解和领会反比例函数的概念.
教学难点:领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1)
;(2)
;(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有
的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1)
;(2)
;(3)
概念:如果两个变量x,y之间的关系可以表示成
的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的.模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1、只有xy=123是反比例函数.
2、分析:因为y是x的反比例函数,所以
,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设
,因为x=2时,y=6,所以有
解得k=12
因此
(2)把x=4代入
,得
三、巩固提高
活动5
1、已知y是x的反比例函数,并且当x=3时,y=8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2、y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.