八年级数学教案
八年级数学教案范文汇总六篇
作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?以下是小编为大家整理的八年级数学教案6篇,仅供参考,希望能够帮助到大家。
八年级数学教案 篇1
教学内容和地位:
众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。
教学重点和难点:
本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。
教学目标分析:
认知目标:
(1)使学生认知众数、中位数的意义;
(2)会求一组数据的众数、中位数。
能力目标:
(1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。
(2)在问题解决的.过程中,培养学生的自主学习能力;
(3)在问题分析的过程中,培养学生的团结协作精神。
情感目标:
(1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣;
(2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。
教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库
教法与学法:
根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。
八年级数学教案 篇2
第一步:情景创设
乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):
A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你认为哪厂生产的乒乓球的直径与标准的误差更小呢?
(1)请你算一算它们的平均数和极差。
(2)是否由此就断定两厂生产的乒乓球直径同样标准?
今天我们一起来探索这个问题。
探索活动
通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动
算一算
把所有差相加,把所有差取绝对值相加,把这些差的平方相加。
想一想
你认为哪种方法更能明显反映数据的波动情况?
第二步:讲授新知:
(一)方差
定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用
来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。
意义:用来衡量一批数据的'波动大小
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定
归纳:(1)研究离散程度可用(2)方差应用更广泛衡量一组数据的波动大小
(3)方差主要应用在平均数相等或接近时
(4)方差大波动大,方差小波动小,一般选波动小的
方差的简便公式:
推导:以3个数为例
(二)标准差:
方差的算术平方根,即④
并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.
注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
八年级数学教案 篇3
教学目标:
1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.
2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;
3、使学生能够利用最简公分母进行验根.
教学重点:
可化为一元二次方程的分式方程的解法.
教学难点:
教学难点:解分式方程,学生不容易理解为什么必须进行检验.
教学过程:
在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的.基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望.
为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去.
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.
二、新课讲解:
通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同.
点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.
在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.
八年级数学教案 篇4
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注重纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的.性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
动画演示:
场景五:平行四边形、矩形、菱形、正方形之间的关系
场景六:平行四边形、矩形、菱形、正方形之间的性质关系
师:当然平行四边形、矩形、菱形和正方形它们之间的关系还可以用下图(图1)表示:
图1
师:请同学们把平行四边形、矩形、菱形和正方形它们之间的关系以及平行四边形、矩形、菱形和正方形它们之间的性质关系整理在笔记本上。
例题讲解
例1 在已知锐角三角形ABC外边作正方形ABDE和正方形ACFG,求证:BG=CE
分析:据已知条件画出图形,如图2所示,要证实线段相等,与图形可以证实二个三角形全等,即只需证实△ABG≌△AEC。
证实:∵四边形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE ∠BAC=∠CAG ∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC ∴BG=CE
图2
说明:应用正方形的性质,可以为证实全等提供条件,要注重等式性质的应用,这与向锐角三角形ABC外作等边三角形的结论完全相同,证法是可以借鉴的。
巩固练习
巩固练习题目可有教师根据学生情况自主选择。
讲解新课
师:正方形是非凡的平行四边形、矩形、菱形,那么根据平行四边形、矩形、菱形和正方形它们之间的关系,怎么判定一个矩形是正方形?
生:证一组邻边相等。
师:怎么判定一个菱形是正方形?
生:证有一个角是直角。
师:怎么判定一个平行四边形是正方形?
生:根据定义,证有一组邻边相等且有一个角是直角。
师:那么,刚才的结论假如用图来表示,是不是如图2所示?
师:图3表现出由平行四边形、矩形、菱形分别得到正方形的三种方法。这是我们根据平行四边形、矩形、菱形和正方形它们之间的关系得到的,但似乎有缺憾,能不能同样根据平行四边形、矩形、菱形和正方形它们之间的关系把图3补全?
[学生活动:积极思考,部分学生迷惑不解。]
师点取上等学生回答问题,根据回答得图4。
学生恍然大悟。
学生思路得到启发,中上等及上等学生意犹未尽,鼓励他们根据矩形、菱形的判定方法直接得到正方形的判定思路,并要求其举出简单示例。
就势跟进,要求学生思考,给定四边形,有什么样的边、角、对角线条件可判定四边形是正方形?要求给出简单图例,并说出相应证实思路。
为进一步理解正方形的判定方法,可研究以下几个问题:
(1)对角线相等的菱形是正方形吗?
(2)对角线互相垂直的矩形是正方形吗?
(3)对角线互相垂直且相等的四边形是正方形吗?若不是,还需增加什么条件?
(4)能说“四条便都相等的四边形是正方形吗?”
(5)四个角都相等的四边形是正方形吗?
小结:证实正方形的思路,总体讲三种思路,如图4所示;碰到具体条件要学会具体分析,规定条件和隐含条件不外乎边、角、对角线,或者把他们搅和在一起。这是一定要都要冷静,学会去分析。
动画演示:
场景七:正方形的判定
例题讲解
例2 如图所示,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M,
求证:AD=AM。
分析:欲证AD=AM,只需证实∠1=∠2,但要根据题目条件直接证实∠1=∠2比较困难,考虑到E、F是正方形的两边中点,轻易证实得:△BCF≌△CDF,得∠3=∠4,而∠4 ∠BCF=90°。由此DE⊥CF,这是要证AD=AM,是否想到与直角有关的等腰三角形?只需延长CF、DA交于N,即可出现直角三角形MND,只要证实A是ND中点即可。这是是否发现△BCF≌△ANF?由AN=BC=AD,从而A是ND中点,MA是直角三角形MND的斜边ND上的中线。问题得证。
证实:略。
说明:将此题中的中点E、F进行变化:E、F分别为正方形ABCD的边BC、AB上的点,且BE=AF,则有DE⊥CF。这个变化后的图形在正方形中经常出现,要注重隐含的这个垂直条件。
课堂练习题及课后作业可由教师根据学生情况自主选择。
八年级数学教案 篇5
一、创设情境
在学习与生活中,经常要研究一些数量关系,先看下面的问题.
问题1如图是某地一天内的气温变化图.
看图回答:
(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.
(2)这一天中,最高气温是多少?最低气温是多少?
(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?
解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;
(2)这一天中,最高气温是5℃.最低气温是-4℃;
(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.
从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?
二、探究归纳
问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的`存款方式规定的年利率:
观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.
解随着存期x的增长,相应的年利率y也随着增长.
问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:
观察上表回答:
(1)波长l和频率f数值之间有什么关系?
(2)波长l越大,频率f就________.
解(1)l与f的乘积是一个定值,即
lf=300000,
或者说.
(2)波长l越大,频率f就 越小 .
问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.
利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:
由此可以看出,圆的半径越大,它的面积就_________.
解S=πr2.
圆的半径越大,它的面积就越大.
在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).
上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值
八年级数学教案 篇6
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的'表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。下列各数的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根为±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根为±0。7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P。127练习1、2、3、4。
八、板书设计
平方根
(一)概念 (四)表示方法 例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。
例1。求 的值。
解 ∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0。9,
便可依次得到精确度
为0。01,0。001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01