范文网 >教案大全 >数学教案 >初二数学上册教案

初二数学上册教案

情殇 分享更新时间:
投诉

初二数学上册教案15篇

作为一位兢兢业业的人民教师,编写教案是必不可少的,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写呢?下面是小编为大家收集的初二数学上册教案,欢迎阅读,希望大家能够喜欢。

初二数学上册教案1

一、教学目标:

1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。

2了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。

二、教学重、难点:

理解中心对称图形的概念及其基本性质。

三、教学过程:

(一)创设问题情境

1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。

【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。

(课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)

师重复以上活动

2次后提问:

(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?

(2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)

(反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。

(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(

3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)

2.教师揭示谜底。

利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转

180O后和原来牌面一样。

3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:

(1)只有一张扑克牌图案颠倒后和原来牌面一样。

(2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O后,就可以马上在一堆扑克牌中找出它。

(反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。)

(二)学生分组讨论、思考探究:

1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?

生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。

2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用 “

Z+Z”演示其旋转过程。)3

.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?

(对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、 “动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)

(三)教师明晰,建立模型

1给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

2.对比轴对称图形与中心对称图形:(列出表格,加深印象)

轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转1880O对折后与原图形重合

旋转后与原图形重合

(四)解释、应用与拓广

1.教师用“Z+Z

智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。

(利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)

2.探究中心对称图形的性质

板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

3.师问:怎样找出一个中心对称图形的对称中心?

(两组对应点连结所成线段的交点)

4平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?

学生分组讨论交流并回答。

讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。

讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?

5逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?

学生讨论回答。

6你还能找出哪些多边形是中心对称图形?

(反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的'小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)

(五)拓展与延伸

1中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?

2.正六边形的对称中心怎样确定?

(六)魔术表演:

1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180o后,得到右图,你知道哪一张扑克被旋转过吗?

2.学生小组活动:

以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。

(新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)

四、案例小结

《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。

现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。

初二数学上册教案2

教学目标:

1. 掌握三角形内角和定理及其推论;

2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:三角形内角和定理及其推论。

教学难点:三角形内角和定理的证明

教学用具:直尺、微机

教学方法:互动式,谈话法

教学过程:

1、创设情境,自然引入

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

问题2 你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试

(1)求证:三角形三个内角的和等于

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题1 观察:三个内角拼成了一个 什么角?

问题2 此实验给我们一个什么启示?

(把三角形的三个内角之和转化为一个平角)

问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的`。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢?

问题1 直角三角形中,直角与其它两个锐角有何关系?

问题2 三角形一个外角与它不相邻的两个内角有何关系?

问题3 三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

3、三角形三个内角关系的定理及推论

通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。

4、变式训练,巩固提高

根据例4 的度数的求法,思考如下问题:

(3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则 的度数多少?

(4)当MN绕着点D旋转过程中, 会有怎样的变化?

提示:变化1 当直线MN与AC、BC的交点仍在线段AC、BC上时, =

变化2 当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,

变化3 当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时, =

变化4当直线MN与AC、BC的交点在C点时, =

经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。

5、小结

通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。

6、布置作业

a、书面作业P43#3

b、上交作业P42#16、17

初二数学上册教案3

教学目标:

知识与技能:会解含有分母的一元一次不等式;能够用不等式表达数量之间的不等关系;能够确定不等式的整数解。

过程与方法:经历解方程和解不等式两种过程的比较,体会类比思想,发展学生的数学思考水平。

情感态度、价值观:通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯。.

教材分析:

本节教材首先让学生动手做一做解两个不等式;之后让大家谈谈解一元一次不等式与解一元一次方程的异同点;最后是关于通过列不等式表示数量之间不等关系的例题2、3,其中例3涉及到了不等式的正解数解问题。关于解含有分母的一元一次不等式,学生在去分母这一部可能容易出错,可以采用通过学生深度解决、师生总结交流方法、巩固应用等方式处理。关于一元一次不等式的整数解问题,学生确实会有一定困难,主要是思考不够认真,缺少方法等原因,教师要注重借助数轴的学法指导。

教学重点:

1、含有分母的一元一次不等式的`解法

2、用不等式表达数量之间的不等关系

3、确定不等式的整数解

教学难点:

1、解含有分母的一元一次不等式时,去分母这一部的准确性。

2、不等式的整数解的确定

教学流程:

一、直接引入

我们学习了解一元一次方程和解一元一次不等式,它们之间有怎样的区别和联系呢今天我们来探究一下。

二、探究新知

(一)解一元一次方程和解一元一次不等式的异同点

1、出示问题,让学生板演

找两名同学,分别解下面两个问题:

(1)解方程:﹦

(2)解不等式:

2、小组讨论解一元一次方程和解一元一次不等式的过程的异同点。

3、师生交流。

相同点:解一元一次方程和解一元一次不等式的步骤相同,依次为:去分母去括号移项,合并同类项化系数为1。

不同点:在解一元一次不等式的化系数为1时,要注意不等式两边乘或除以同一个负数时,不等号要改变方向。

4、运用新知。

将下列不等式中的分母化去:

初二数学上册教案4

教学目标

1.掌握正方形的定义、性质和判定及它们初步应用.

2.理解正方形与平行四边形、矩形、菱形的内在联系.

3.通过正方形与平行四边形、矩形、菱形的联系的教学来提高学生的逻辑思维能力.

教学重点和难点

重点是正方形的定义及正方形与矩形、菱形的联系;

难点是正方形与矩形、菱形的关系及正方形的性质、判定的灵活运用.

教学过程设计

一、通过知识结构的教学,学习正方形的知识.

1.复习平行四边形、矩形、菱形的定义.

学生边回答,教师边用活动教具演示平行四边形演变成矩形、菱形的过程,并画出它们之间的内在联系图.(画出图4-50(a)中的四边形,平行四边形、矩形、菱形及箭头)

2.类比联想,用运动方式得出正方形的定义.

问:既然矩形、菱形都能由平行四边形运动变化得到,那么正方形呢?

启发学生将小学熟悉的正方形与平行四边形作比较,用教具演示出平行四边形形成正方形的过程,同时归纳出正方形的定义.教师板书定义并画出图4-50中的正方形及箭头①.

3.完善特殊的`平行四边形的知识结构.

(1)师生共同分析正方形定义的三个要点:①是平行四边形;②有一个角是直角;③有一组邻边相等.

(2)对比正方形与矩形、菱形的定义,得出它们的联系:

①由正方形定义①,②条件可知正方形是特殊的矩形.(画出图中的箭头②及正方形集合A5和矩形集合A1)

②由正方形定义的①,③条件可知正方形是特殊的菱形.(画出图4-50中的箭头③及菱形集合A2)

③由正方形的定义的所有条件可知,正方形又是特殊的平行四边形.(画出图4-50中的集合A3)

④平行四边形、矩形、菱形、正方形都是特殊的四边形.(画出图4-50(b)中四边形集合A4)

而且从以上过程可知,正方形既是矩形又是菱形.(集合A2与A1的公共部分)

4.从整体知识结构出发,研究正方形的性质和判定.

(1)正方形的性质.

引导学生由正方形与矩形、菱形的关系得知:正方形具有矩形和菱形的一切性质.让学生复习矩形和菱形的性质,从而得到正方形的性质.

①边:四边都相等.(性质定理1)

②角:四个角都是直角.

③对角线:相等、互相垂直平分,每条对角线平分一组对角.(性质定理2)

(2)正方形的判定.

引导学生根据正方形与平行四边形、矩形、菱形之间的关系,总结出正方形的三类判定方法:

①先判定四边形是平行四边形,再判定它是正方形;(图4-50(a)中箭头①)

②先判定四边形是矩形,再判定这个矩形又是菱形;(图4-50(a)中箭头②)

③先判定四边形是菱形,再判定这个菱形又是矩形.(图4-50(a)中箭头③)

(3)巩固练习:判断下列命题是否正确,不是正方形的补充什么条件能让它成为正方形?

①四个角都相等的四边形是正方形;(×)

②四条边都相等的四边形是正方形;(×)

③对角线相等的菱形是正方形;(√)

④对角线互相垂直的矩形是正方形;(√)

⑤对角

初二数学上册教案5

一、教学目的:

1.掌握菱形概念,知道菱形与平行四边形的关系.

2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.

3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、重点、难点

1.教学重点:菱形的'性质1、2.

2.教学难点:菱形的性质及菱形知识的综合应用.

三、课堂引入

1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

菱形定义:有一组邻边相等的平行四边形叫做菱形.

【强调】 菱形(1)是平行四边形;(2)一组邻边相等.

让学生举一些日常生活中所见到过的菱形的例子.

四、例习题分析

例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.

求证:∠AFD=∠CBE.

证明:∵四边形ABCD是菱形,

∴ CB=CD,CA平分∠BCD.

∴∠BCE=∠DCE.又CE=CE,

∴△BCE≌△COB(SAS).

∴∠CBE=∠CDE.

∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC

∴ ∠AFD=∠CBE.

例2(教材P108例2)略

五、随堂练习

1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.

2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.

3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.

4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.

六、课后练习

1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.

2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.

初二数学上册教案6

1、教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。

2、教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

一、素质教育目标

(一)知识教学点

1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。

2、了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力训练点

1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2、通过推导四边形内角和定理,对学生渗透化归思想。

3、会根据比较简单的条件画出指定的四边形。

4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导

类比、观察、引导、讲解

三、重点难点疑点及解决办法

1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2、教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第一课时

七、教学步骤

【复习引入】

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一

章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的'知识解决一些新问题。

【引入新课】

用投影仪打出课前画好的教材中P119的图。

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。

【讲解新课】

1、四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形。

(2)要与三角形类比。

(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。

(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。

2、四边形内角和定理

教师问:

(1)在图4—3中对角线AC把四边形ABCD分成几个三角形?

(2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?

(3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。

我们知道,三角形内角和等于180,那么四边形的内角和就等于:

①2180=360如图4

②4180—360=360如图4—7。

例1已知:如图48,直线于B、于C。

求证:(1) (2) 。

本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。

【总结、扩展】

1、四边形的有关概念。

2、四边形对角线的作用。

3、四边形内角和定理。

八、布置作业

教材P128中1(1)、2、 3。

九、板书设计

四边形有关概念

四边形内角和

例1

十、随堂练习

教材P122中1、2、3。

初二数学上册教案7

教学目标

1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

教学重点:

1.等腰三角形的概念及性质.

2.等腰三角形性质的应用.

教学难点:

等腰三角形三线合一的性质的理解及其应用.

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的'三角形──等腰三角形.

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成等边对等角).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作三线合一).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

初二数学上册教案8

一、班级情况分析:

本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。

一(7)班有学生38人,上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。

两班的整体成绩均不够理想。

二、教材分析:

本套教材切合《标准》的课程目标,有以下特点:

1.为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。

2.向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。

3.为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。

4.展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。

5.满足不同学生发展的需求。

三、教学目标及要求:

第一章:

1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。

2.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。

3.了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。

4.会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

第二章:

1.经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。

2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。

3.经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的.特征。

4.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。

第三章:

1.能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。

2.了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。

3.通过实例,体验收集、整理、描述和分析数据的过程。

4.能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。

第四章:

1.经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。

2.体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。

3.能设计符合要求的简单概率模型。

第五章:

1.通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。

2.在探索图形性质的过程中,发展推理能力和有条理的表达能力。

3.进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。

4.了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。

5.在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。

第六章:

1.经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。

2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。

3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。

4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。

第七章:

1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。

2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。

3.探索并了解基本图形的轴对称性及其相关性质。

4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。

5.欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。

四、教学改革的设想(教学具体措施)

充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:

1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。

2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。

3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。

4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。

5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。

6、开展“一帮一”活动,实行以优带差点的帮助方法,多利用课余时间加强辅导,从基础知识补起,力求使学生一课一得,力求提高优秀率和及格率。

7.课前充分备好课,在课堂教学中特别要体现出培扶,分层次教育。

8.重视学生学习兴趣的培养,激发学生学习数学的内驱力。

9.大胆地深度尝试新的教学方法,要因地制宜,因材施教。

10.重视基础知识过关和单元测试过关工作,及时进行单元总结,做好平时的查漏补缺工作,不遗漏知识盲点。

11.注重对作业、练习纸、练习册、测验卷的及时批改,并尽量做到全批全改,及时反馈信息。

12.多用多媒体教学,使数学生动化。

13.多用实物教学,使数学形象化。

14.实行课课清,日日清,周周清。

15.加强课堂管理,严把课堂质量关,提高课堂效率。

16.抓好学生的作业上交完成情况。

17.加强与学生的交流,做好学生的思想教育与培优辅差工作。

五、拟定本学期教学目标

六、拟定本学期培优扶养计划。

培扶措施

对临界优秀生

在理解题、思维训练题给予方法指导,并要加强书面的表达能力。做到思路清晰,格式标准。基础训练题的过关检测,对每次测试的成绩给予个别指导,多用激励教育。

对临界及格生:

首先加强基础知识的培训,尤其要在选择题、填空题多下功夫。在课堂上、课后对他们多加注意,及时纠正错误。抓好每次单元过关测试工作,抓好时机,多表扬,树立信心。

七、教学内容及课时安排(略)

八、作业格式及批改要求:

作业格式:

1.作业本左边都画上竖线,留约0.5CM空白。

2.每次作业都要在第一行注明日期和作业的出处,如P42,1即课本42面第1题。

3。每题作业之间要留一行隔开,每次作业之间至少留一行空白,再写下一次作业。

批改要求:

1.每题作业都要有批改的痕迹,错的打“×”,对的打“√”,书写要清晰,明确看出错对。

2.每次作业必须全批全改,要体现出层次。作业簿要打分数+等级(等级分A、B、C三等,代表学生的书写成绩。)

3、每次的作业要及时更正,更正时统一在每次的作业后面用红笔更正。

初二数学上册教案9

教学目标

1知识与技能目标

(1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.

(2)能判断给出的数是否为无理数,并能说出理由.

2过程与方法目标

(1)学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.

(2)通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.

(3)借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.

3情感与态度目标

(1)激励学生积极参与教学活动,提高大家学习数学的热情.

(2)引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.

(3)了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.

教学重点

1让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.

2会判断一个数是否为有理数,是否不是有理数.

3用计算器进行无理数的估算.

教学难点

1把两个边长为1的正方形拼成一个大正方形的动手操作过程.

2无理数概念的建立及估算.

3判断一个数是否为有理数.

教学准备:多媒体,两个边长为1的正方形,剪刀,短绳.

教学过程:

第一环节:章节引入(2分钟,学生阅读感受)

内容:.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:

(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?

(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?

b.你能求出面积为2的正方形的边长吗?你知道圆周率的精确值吗?它们能用整数或分数(即有理数)来表示吗?

第二环节:复习引入(3分钟,学生口答)

内容:阅读下面的资料,在数学中,有理数的定义为:形如的数(p、q为互质的整数,且p≠0)叫做有理数,当p=1,q为任意整数时,有理数就是指所有的整数,如:=-2等,当p≠1时,由p、q互质可知,有理数就是指所有的分数,如,-,-等,综上所述,有理数就是整数和分数的统称.

请用上述材料中所涉及的知识证明下面的问题:

a.直角边长分别为3和1的直角三角形的斜边长是不是有理数?

b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢?

第三环节:活动探究(15分钟,学生动手操作,小组合作探究)

(一)发现新数

内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.

在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:

(1)设大正方形的边长为,应满足什么条件?

(2)满足:2=2的数是一个什么样的数?可能是整数吗?说明你的理由?

(3)可能是分数吗?说说你的理由?

引出课题《数怎么又不够用了》

(二)感受新数的广泛性

内容:面积为5的`正方形,它的边长b可能是有理数吗?说说你的理由。

(三)巩固验证,应用拓展

内容:aB,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由.

b如图(1)是由16个边长为1的小正方形拼成的,试从连接这些

小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段

第四环节:介绍历史,开阔视野(3分钟,学生阅读)

内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现.

第五环节:课时小结(2分钟,全班交流)

内容谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?

b感受数不够用了,会确定一个数是有理数或不是有理数.

c本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识.

第六环节:布置作业

初二数学上册教案10

教学目的:

1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。

2、结合学生的实际情况,让学生填写算式。

3、在教学中渗透数的顺序,并进行社会秩序教育。

4、学会与人合作,体会计算的多样化,发展学生思维。

教学重点:掌握20以内数的顺序。

教学难点:初步建立数的概念

教学准备:每组一个数位计数器及40-50根小棒等。

教学方法:抓问题,用多种游戏,把抽象的数位具体化。

教学步骤:

一、创设情景,寻找关键问题

1、数学课研究数学问题,一些小棒会有什么数学问题。

(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)

2、你发现了什么数学问题。

(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)

3、游戏,看谁的手小巧。

老师报数,学生用棒子表示,讨论:快的.同学的诀窍。

出示:十根可以捆一捆。

再进行游戏,让学生习惯中把1捆当作10根用。

4、完成:

()个一()个十

试一试,在计数器拔出10

个位只有几颗珠子,怎么办?(10个一是1个10)

在个位拔上一颗珠子,表示1个十,也表示10个一。

二、自主合作,解决数位顺序。

在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。

1、11-20各数在计数器上怎么表示呢?

问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。

(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)

2、

1个十,1个一是1110+1=11

10和11,十位上是1,没有变,个位由0变成1,就是11。

3、15、19、20的数位可重点检查。

(20的数位可由10-20,也可19-20来描述。)

4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。

5、练习:(口算)

10+910+810+710+610+5

10+410+39+108+107+10

6+105+104+103+10

三、实践应用,实现知识延伸

1、寻找粗心丢失的数。

游戏报数。(报数时丢一些中间数)

2、开火车顺数

游戏:数数(顺数和倒数)

3、拔珠游戏(师生――生生)

报数13,拔13并写出13,同时说13的含义,还可画珠。

4、p691-6自己完成。

四、课外实践,拓展知识应用。

1、完成10-20各数数位图及小棒图。

2、和父母互说10-20各数组成。

课后评析:

初二数学上册教案11

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

重点、难点

1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价—成本; =商品利润率

二、新授

问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息—利息税=48.6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×X×2,利息税为2.43%X×2×20%

根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的`80%,因此可得2.43%x·2.80%=48.6

解方程,得x=1250

例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%—x

由等量关系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服装的成本是125元。

三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

五、作业

教科书第16页,习题6.3.1,第4、5题。

初二数学上册教案12

重难点分析

本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5.由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

矩形教学设计

教学目标

1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

2.能运用以上性质进行简单的证明和计算。

此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

引导性材料

想一想:一般四边形与平行四边形之间的相互关系?在图4.5-1的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?

(让学生初步感知矩形与平行四边形的从属关系。)

演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的`一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。

问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?

说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。

学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。

问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?

说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证明:

证明:在矩形ABCD中,对角线AC、BD相交于点O,AC=BD(矩形的对角线相等)。

AO=CO

在Rt△ABC中,BO是斜边AC上的中线,且。

直角三角形斜边上的中线等于斜边的一半。

例题解析

例1:(即课本例1)

说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:

如图4.5-4,欲求对角线BD的长,由于BAD=90,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件AOD=120出发,应用矩形的性质可知,ADB=30,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:

∵四边形ABCD是矩形,

AC=BD(矩形的对角线相等)。

又。

OA=BO,△AOB是等腰三角形,

∵AOD=120,AOB=180- 120= 60

AOB是等边三角形。

BO=AB=4cm,

BD=2BO=244cm=8cm。

例2:(补充例题)

已知:如图4.5-5四边形ABCD中,ABC=ADC=90,E是AC的中点,EF平分BED交BD于点F。

(1)猜想:EF与BD具有怎样的关系?

(2)试证明你的猜想。

解:(1)EF垂直平分BD。

(2)证明:∵ABC=90,点E是AC的中点。

(直角三角形的斜边上的中线等于斜边的一半)。

同理:。

BE=DE。

又∵EF平分BED。

EFBD,BF=DF。

说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。

课堂练习

1.课本例1后练习题第2题。

2.课本例1后练习题第4题。

小结

1.矩形的定义:

2.归纳总结矩形的性质:

对边平行且相等

四个角都是直角

对角线平行且相等

3.直角三角形斜边上的中线等于斜边的一半。

4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。

作业

1.课本习题4.3A组第2题。

2.课本复习题四A组第6、7题。

初二数学上册教案13

一、基本知识和需说明的问题:

(一)圆的有关性质,本节中最重要的定理有4个。

1、垂径定理:

本定理和它的三个推论说明: 在(垂直于弦(不是直径的弦);(2)平分弦;(3)平分弦所对的弧;(4)过圆心(是半径或是直径)这四个语句中,满足两个就可得到其它两个的结论。如垂直于弦(不是直径的弦)的直径,平分弦且平分弦所对的两条弧。条件是垂直于弦(不是直径的弦)的直径,结论是平分弦、平分弧。再如弦的垂直平分线,经过圆心且平分弦所对的弧。条件是垂直弦,、分弦,结论是过圆心、平分弦。

应用:在圆中,弦的一半、半径、弦心距组成一个直角三角形,利用勾股定理解直角三角形的知识,可计算弦长、半径、弦心距和弓形的高。

2、圆心角、弧、弦、弦心距四者之间的`关系定理:

在同圆和等圆中, 圆心角、弧、弦、弦心距这四组量中有一组量相等,则其它各组量均相等。这个定理证弧相等、弦相等、圆心角相等、弦心距相等是经常用的。

3、圆周角定理:

此定理在证题中不大用,但它的推论,即弧相等所对的圆周角相等;在同圆或等圆中,圆周角相等,弧相等。直径所对的圆周角是直角,90°的圆周角所对的弦是直径,都是很重要的。条件中若有直径,通常添加辅助线形成直角。

4、圆内接四边形的性质。

(二)直线和圆的位置关系。

1、性质:

圆的切线垂直于经过切点的半径。(有了切线,将切点与圆心连结,则半径与切线垂直,所以连结圆心和切点,这条辅助线是常用的。)

2、切线的判定有两种方法。

①若直线与圆有公共点,连圆心和公共点成半径,证明半径与直线垂直即可。

②若直线和圆公共点不确定,过圆心做直线的垂线,证明它是半径(利用定义证)。根据不同的条件,选择不同的添加辅助线的方法是极重要的。

3、三角形的内切圆:

内心是内切圆圆心,具有的性质是:到三角形的三边距离相等,还要注意说某点是三角形的内心。连结三角形的顶点和内心,即是角平分线。

4、切线长定理:自圆外一点引圆的切线,则切线和半径、圆心到该点的连线组成直角三角形。

(三)圆和圆的位置关系。

1、记住5种位置关系的圆心距d与两圆半径之间的相等或不等关系。会利用d与R,r之间的关系确定两圆的位置关系,会利用d,R,r之间的关系确定两圆的位置关系。

2、相交两圆,添加公共弦,通过公共弦将两圆连结起来。

(四)正多边形和圆。

1、弧长公式。

2、扇形面积公式。

3、圆锥侧面积计算公式:S= 2π=π。

二、巩固练习。

(一)精心选一选,相信自己的判断!

1、如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是

A、外离 B、外切 C、相交 D、内切

2、已知⊙O的直径为12cm,圆心到直线L的距离为6cm,则直线L与⊙O的公共点的个数为( )

A、2 B、1 C、0 D、不确定

3、已知⊙O1与⊙O2的半径分别为3cm和7cm,两圆的圆心距O1O2 =10cm,则两圆的位置关系是( )

A、外切 B、内切 C、相交 D、相离

4、已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,则⊙O的半径是( )

A、3厘米 B、4厘米 C、5厘米 D、8厘米

5、下列命题错误的是( )

A、经过三个点一定可以作圆 B、三角形的外心到三角形各顶点的距离相等

C、同圆或等圆中,相等的圆心角所对的弧相等 D、经过切点且垂直于切线的直线必经过圆心

6、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )

A、与x轴相离、与y轴相切 B、与x轴、y轴都相离

C、与x轴相切、与y轴相离 D、与x轴、y轴都相切

7、在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )

A、25π B、65π C、90π D、130π

(二)细心填一填,试自己的身手!

12、各边相等的圆内接多边形_____正多边形;各角相等的圆内接多边形_____正多边形。(填“是”或“不是”)

13、△ABC的内切圆半径为r,△ABC的周长为l,则△ABC的面积为_______________ 。

14、已知在⊙O中,半径r=13,弦AB∥CD,且AB=24,CD=10,则AB与CD的距离为__________。

15、同圆的内接正四边形和内接正方边形的连长比为____________________。

初二数学上册教案14

教学目标:

经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

教学重点和难点

重点:圆与圆之间的几种位置关系

难点:两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

教学过程设计

一、从学生原有的认知结构提出问题

1)复习点与圆的位置关系;2)复习直线与圆的位置关系。

二、师生共同研究形成概念

1.书本引例

☆ 想一想 P 125 平移两个圆

利用平移实验直观地探索圆和圆的位置关系。

2.圆与圆的`位置关系

每一种位置关系都可以先让学生想想应该用什么名称表达。在讲解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出来

☆ 巩固练习 若两圆没有交点,则这两个圆的位置关系是 相离 ;

若两圆有一个交点,则这两个圆的位置关系是 相切 ;

若两圆有两个交点,则这两个圆的位置关系是 相交 ;

☆ 想一想 书本P 126 想一想

通过实际例子让学生理解圆与圆的位置关系。

3.圆与圆相切的性质

☆ 想一想 书本P 127 想一想

旨在引导学生思考两圆相切的性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。学生容易看出两圆相切图形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。

如果两圆相切,那么两圆的连心线经过切点

4.讲解例题

例1.已知⊙ 、⊙ 相交于点A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度数;2)⊙ 的半径 和⊙ 的半径 。

5.讲解例题

例2.两个同样大小的肥皂泡粘在一起,其剖面如图所示,分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小。

三、随堂练习

1.书本 P 128 随堂练习

2.《练习册》 P 59

四、小结

圆与圆的位置关系;圆心距与两圆半径和两圆的关系。

五、作业

书本 P 130 习题3.9 1

初二数学上册教案15

一、学生起点分析

八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.

二、教学任务分析

《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.

为此本节课的教学目标是:

1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.

4.理解一次函数的代数表达式与图象之间的一一对应关系.

教学重点是:

初步了解作函数图象的一般步骤:列表、描点、连线.

教学难点是:

理解一次函数的代数表达式与图象之间的一一对应关系.

三、教学过程设计

本节课设计了七个教学环节:

第一环节:创设情境引入课题;

第二环节:画一次函数的图象;

第三环节:动手操作,深化探索;

第四环节:巩固练习,深化理解;

第五环节:课时小结;

第六环节:拓展探究;

第七环节:作业布置.

第一环节:创设情境引入课题

内容:

一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?

我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

目的:通过学生比较熟悉的.生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.

效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.

第二环节:画正比例函数的图象

内容:首先我们来学习什么是函数的图象?

把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

例1请作出正比例函数y=2x的图象.

第三环节:动手操作,深化探索

内容:做一做

(1)作出正比例函数y= 3x的图象.

(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.

请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.

(1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?

(2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?

(3)正比例函数y=kx的图象有什么特点?

明晰

由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.

议一议

既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?

因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.

4.3一次函数的图象:同步测试

14若直线经过第一.二.四象限,则k.b的取值范围是( ).

A.k>0,b>0 B.k>0,b<0

C.k<0,b>0 D. k<0,b<0

2.已知一次函数y=3-2x

(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;

(2)从图像看,y随着x的增大而增大,还是随x的增大而减小?

(3)x取何值时,y>0?

3.已知一次函数y=-2x+4

(1)画出函数的图象.

(2)求图象与x轴、y轴的交点A、B的坐标.

(3)求A、B两点间的距离.

(4)求△AOB的面积.

(5)利用图象求当x为何值时,y≥0.

《函数的图象》课后练习

1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()

A.y=1.5(x+12)(0≤x≤10)

B.y= 1.5x+12(0≤x≤10)

C.y=1.5x+10(x≥0)

D.y=1.5(x-12)(0≤x≤10)

标签:上册初二