高一数学分数指数幂数学教案
高一数学分数指数幂数学教案
作为一位无私奉献的人民教师,通常需要准备好一份教案,借助教案可以更好地组织教学活动。那么你有了解过教案吗?下面是小编精心整理的高一数学分数指数幂数学教案,欢迎阅读,希望大家能够喜欢。
教学目标
1.理解分数指数幂的含义,了解实数指数幂的意义。
2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。
教学重点
1.分数指数幂含义的理解。
2.有理数指数幂的运算性质的理解。
3.有理数指数幂的运算和化简。
教学难点
1.分数指数幂含义的理解。
2.有理数指数幂的运算和化简。
教学过程
一.问题情景
上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?
二.学生活动
1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系
(1)=(2)=
2.从上述问题中,你能得到的结论为
3.(a0)及(a0)能否化成指数幂的形式?
三.数学理论
正分数指数幂的意义:=(a0,m,n均为正整数)
负分数指数幂的意义:=(a0,m,n均为正整数)
1.规定:0的正分数指数幂仍是0,即=0
0的负分数指数幂无意义。
3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。
即=(1)
=(2)其中s,tQ,a0,b0
=(3)
四.数学运用
例1求值:
(1)(2)(3)(4)
例2用分数指数幂的形式表示下列各式(a0)
(1)(2)
例3化简
(1)
(2)(3)
例4化简
例5已知求(1)(2)
五.回顾小结
1.分数指数幂的意义。=(0,m,n)
无意义
2.有理数指数幂的运算性质
3.整式运算律及乘法公式在分数指数幂运算中仍适用
4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分
练习P47-48练习1,2,3,4
六.课外作业
P48习题2.2(1)2,4