范文网 >教案大全 >数学教案 >初中数学教案

初中数学教案

暗香浮 分享更新时间:
投诉

初中数学教案15篇(合集)

作为一名老师,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?以下是小编为大家收集的初中数学教案,仅供参考,大家一起来看看吧。

初中数学教案1

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的`关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

初中数学教案2

一、主题分析与设计

本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

二、教学目标

1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事

3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

三、教学重、难点

1、重点:对平行线性质的掌握与应用

2、难点:对平行线性质1的探究

四、教学用具

1、教具:多媒体平台及多媒体课件

2、学具:三角尺、量角器、剪刀

五、教学过程

(一)创设情境,设疑激思

1、播放一组幻灯片。

内容:

①供火车行驶的铁轨上;

②游泳池中的泳道隔栏;

③横格纸中的线。

2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)

(二)数形结合,探究性质

1、画图探究,归纳猜想

教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

教师提出研究性问题一:

指出图中的同位角,并度量这些角,把结果填入下表:

教师提出研究性问题二:

将画出图中的同位角任先一组剪下后叠合。

学生活动一:画图————度量————填表————猜想

学生活动二:画图————剪图————叠合

让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

教师提出研究性问题三:

再画出一条截线d,看你的猜想结论是否仍然成立?

学生活动:探究、按小组讨论,最后得出结论:仍然成立。

2、教师用《几何画板》课件验证猜想,让学生直观感受猜想

3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思考,培养创新

教师提出研究性问题四:

请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

学生活动:独立探究————小组讨论————成果展示。

教师活动:评价学生的研究成果,并引导学生说理

因为a ∥ b(已知)

所以∠ 1= ∠ 2(两直线平行,同位角相等)

又∠ 1= ∠ 3(对顶角相等)

∠ 1+ ∠ 4=180°(邻补角的定义)

所以∠ 2= ∠ 3(等量代换)

∠ 2+ ∠ 4=180°(等量代换)

教师展示:

平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1、(抢答)课本P13练一练1、2及习题7。2 1、5

2、(讨论解答)课本P13习题7。2 2、3、4

(五)课堂总结:这节课你有哪些收获?

1、学生总结:平行线的性质1、2、3

2、教师补充总结:

⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

(六)作业

学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)

六、教学反思:

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的'知识或方法。

②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。

③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧

初中数学教案3

教学目标

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

  重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点利用数形结合的方法验证公式

教学方法动手操作,合作探究课型新授课教具投影仪

教师活动学生活动

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的.直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

  作业第95页第3题

板书设计

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案4

一、课题

略。

二、教学目标

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。

4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。

三、教学重点和难点

重点

难点

1.结合具体例子,体会数学与我们的成长密切相关。

2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

结合具体例子,体会数学与我们的成长密切相关。

四、教学手段

现代课堂教学手段

教学准备

教师准备

录音机、投影仪、剪刀、长方形纸片。

学生准备

预习、剪刀、长方形纸片

五、教学方法

启发式教学

六、教学过程设计

一、导入

教师活动

学生活动

展示图片并播放录音。

宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

观察图片,听录音。

二、板书课题。

三、导学

教师活动

学生活动

1.现在让我们进入时空的隧道,回忆我们的成长历程:

出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)

(师、生共同讨论交流,从具体事例中分析并找出数学信息。)

2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的.主要数学知识有哪些?

3.指定若干名学生口答,师生共同系统归纳:

数与式:认识、计算、方程、解应用题;

图形:图形的认识、图形的画法、图形的计算;

统计知识。

4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:

(1)投影或小黑板展示下列问题:

①计算并观察下列三组算式:

②已知25×25=625,则24×26=(不要计算)

③你能举出一个类似的例子吗?

④更一般地,若a×a=m,则(a+1)(a-1)= 。

(老师点评、表扬)

(2)投影或小黑板展示教材第13页第4题。

通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的重大作用。

布置作业:

(1)谈一谈你对数学的兴趣、学习数学的方法以及学习中存在的困难等;

(2)习题1.1第2、4题。

1.回忆、交流、积极大胆发言。

2.回忆、交流。

3.观察、计算、思考、探索。

4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。

学生1

学生2

学生拼图(略)

七、练习设计

课堂基础练习

1、下列图形中,阴影部分的面积相等的是.

答案:A与B;C与D

2、三个连续奇数的和是21,它们的积为

答案:315

3、计算:7+27+377+4777

答案:5188

课后延伸练习

1、猜谜语(各打数学中常用字)

千人分在北上下;②1人立在口上边

答案:①乘;②倍

2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?

答案:[5-(1÷5)]×5

3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:

1 2 3 4 5 6 7 8 9 =100

答案:123-(45+67-89)=100

4、把长方形剪去一个角,它可能是几边形?

答案:三边形,四边形,五边形.

5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?

答案:

能力提高训练

18

19

答案:7个,边长从大到

小依次为11、8、

7、5、3

1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?

2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?

答案:36

八、板书设计

(一)知识回顾(四)例题解析(六)课堂小结

(二)观察发现例1、例2

(三)解方程(五)课堂练习练习设计

九、教学后记

初中数学教案5

课 题:几何画板简介

教学目标:1)通过几何画板课件演示展示其魅力激起兴趣

2)了解几何画板初步操作

教学重点:让学生了解几何画板的工作界面

教学难点:能用几何画板将三角形分成四等份,并用几何画板验证。 教学过程:

一、概述几何画板

几何画板是专门为数学学习与教学需要而设计的软件。有人说它是电子圆规,有人说它是绘图仪,有人说它是数学实验室。它号称二十一世纪的动态几何。它可帮助我们理解数学,动态地表达数量关系,并可设计出许多有用或有趣的作品。

二、几何画板作品展示

三、几何画板简介

1)启动

开始|程序|几何画板|几何画板。启动几何画板后将出现 菜单、工具、 画板。工具(从上到下) 选择 、画点、画圆 、画线、 文本 、对象信息、 脚本工具目录。

2)操作初步

1、文件

新画板 打开一个新的空白画板。

新脚本 打开一个新的空白脚本窗口。用于录制画板的画图过程。 打开 打开一个已存在的画板文件(.gsp)或脚本文件(.gss)。

保存 [保存当前画板窗口画板文件或脚本窗口脚本文件],路径+文件名,确认。

打印预览

打印

退出

2、 选择 几何画板的操作都是先选定,后操作。

选工具(选择 画点 画圆 画线 文本 对象信息 脚本工具目录) 单击:工具选项。

选选择方式 移到选择按左键不放→平移/旋转/缩放;拖曳到平移/旋转/缩放;放→选定。

功能:移动选定的目标按 平移/旋转/缩放 方式移动。

选一个目标 鼠标对准画板中的目标(点、线、圆等),指针变为横向箭头,单击。

选两个以上目标 法一 第二个及以后,Shift+单击。

选两个以上目标 法二 空白处拖曳→虚框;虚框中的目标被选。 选角 选三点:第一、第三点:角两边上的点;第二点:顶点。 不选 单击:空白处。

从多个选中的目标中不选一个 Shift+单击。

选目标的父母和子女 选定,编辑|选择父母/或选择子女。

选所有 编辑|选择所有。

选画点/画圆...,编辑|选择所有点/圆...。

3、删除

删除目标 选目标;Del键(注:同时删除子女目标)。

复原一步 Ctrl+Z = 编辑|复原。

画板变成空白画板 Shift+Ctrl+Z = Shift+编辑|复原。

4、显示

线类型 设置选定的.线/轨迹 为 粗线/细线/虚线。应用 使对象更突出。 颜色 设置选定的图形的颜色。应用 使对象更突出。

字号/字型 设置选定的标注、符号、测算等文字的字号和字型。

字体 设置选定的标注、符号、测算等文字的字体。

显示/隐藏 显示/隐藏 选定的目标(Ctrl+H)。

显示所有隐藏 显示所有的隐藏目标。

显示符号 显示/隐藏 选定目标的符号。

符号选项 更改 符号/符号序列。

轨迹跟踪 设置/消除 选定目标为轨迹跟踪状态。

动画 根据选定的目标条件进行动画运动。

参数设置 角度、弧度、精确度等的设置。

5、对象信息 单击对象信息→?;单击对象→简单信息;双击对象→目标信息对话框。

6、快捷键 隐藏Ctrl+H显示符号Ctrl+K轨迹跟踪Ctrl+T当前目标可操作的内容右键。

(以上简略选讲1、2、3)

四、熟悉几何画板的界面,了解常用工具的用法,

五、把一个三角形分成四等份:

1)用画线工具画一个三形,2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行修改。

3)选择“构造”,---“画中点”

六、验证面积相等:

1)按住shift键,选取点。

2)“构造”---“多边形内部”。

3)“测算”---“面积”

七、等分线段:

1)画射线作辅助线。

2)选取一段做标记向量。

3)“变换”---“平移”。

4)“作图”---“平行线”。

用平行线的性质等分线段。

八、画基本图形

1、画点 选画点,单击画板上一点。(并显示标签)

2、画圆 画圆的两种方法及区别。 (设置不同显示方式)

3、选线段/射线/直线 选画线;按左键不放→线段/射线/直线

九、课后反思

在图中标注文本文字,用辅助线把一线段如何分为四等份

初中数学教案6

从不同方向看

教学目标

本节在介绍不等式的基础上,介绍了不等式的解集并用数轴表示,介绍了解简单不等式的方法,让学生进一步体会数形结合的作用。

知识与能力

1.使学生掌握不等式的解集的概念,以及什么是解不等式。

2.使学生育能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想。

过程与方法

1.通过回忆给学生介绍不等式的解集的概念。

2.教会学生怎样在数轴上表示不等式的解集。

情感、态度与价值观

1.通过反复的训练使学生认识到数轴的重要性,培养其数形结合的思想。

2.通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,体验数学活动充满探索性与创造性。

教学重、难点及教学突破

重点

1.认识不等式的解集的概念。

2.将不等式的解集表示在数轴上。

难点

学生对不等式的解是一个集合可能会不太理解。

教学突破

由于受方程思想的影响,学生对不等式的解集的接受和理解可能会有一定的困难,建议教师能结合简单的不等式和实际问题让学生体会不等式的'解可以是一个集合,并组织学生讨论举例,加深理解。

另外,应在本节的过程中让学生能理解在数轴上表示不等式的解集,让他们熟悉数形结合的思想。

教学步骤

一、新课导入

1.回顾提问:同学们,我们已经学习了不等式。现在我们一起回顾一下什么是不等式,以及有关数轴的知识。

学生用自己的语言描述不等式的定义,并基本说出数轴的三要素是:原点、正方向、单位长度。能将有理数在数轴上表示出来。

2.创设情景:我们现在知道了不等式的解不唯一,那么我们如何将不等式的解全部表示出来呢?这就是我们这节课要解决的问题。

二、不等式的解集

1.讲述不等式的解集的定义,引导学生观察不等式x+2>5,并说出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的解,3.5 、 7是不等式的解。

2.给出“解不等式”的概念,并就上述例题由不完全归纳法给出不等式x+2>5的解集是x>3 。

3.将x>3在数轴上表示出来,并以此图为例讲述在数轴上表示基本不等式的方法:(1)在数轴上找到3;(2)向右表示比3大的点;(3)空心点表示不含有3,所以有下图。

让学生自己动手画出x ≤ 3,并找学生上台板演。

4.就学生在黑板上的板演,指出画图应注意的事项,并让学生观察前后两图的区别。

通过对比两图的不同,发现区别是大于和小于导致图上所取的方向不同,有等号和没等号导致空心和实心的区别。

5.给出适当的例题,巩固本节内容。

本课总结

这节课主要学习了什么是不等式的解集,并教学生在数轴上表示不等式的解集,体会数形结合的思想。

教学探讨与反思

为了提高数学课的教学效果,教师必须使课堂教学过程符合学生的认知规律,并让学生参与到课堂教学活动中来,使他们真正成为课堂教学的主体。教师对课堂教学的设计,应着眼在为学生个性品质的优化创设最佳课堂教学环境。教师引导学生参与的是数学思维活动。

初中数学教案7

初中数学分层次教学案例

【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:?

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:?以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子?我今天才发现不是这样?我今后还会努力发言的?

【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的'参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学教案8

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1.重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2.难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析: 明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析: 此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的'值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析: 此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析: 此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析: 列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm

解一: 设车的速度为xm/s

经检验,符合题意。

答: 车的速度为20m/s。

解二: 设车身的长度为xm

经检验,符合题意。

答: 车的速度为(1000+200)/60=20m/s

例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析: 此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解: 设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答: 零售票价为19.2元。

初中数学教案9

教学目标:

1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题

教 具: 多媒体、棉线、三角板

教学过程:

情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

如何来描述我们所看到的现象?

教学过程:

1、 一段拉直的棉线可近似地看作线段

师生画线段

演示投影片1:①将线段向一个方向无限延长,就形成了______

学生画射线

②将线段向两个方向无限延长就形成了_______

学生画直线

2、 讨论小组交流:

① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

(鼓励学生用自己的语言描述它们各自的特点)

3、 问题1:图中有几条线段?哪几条?

“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

点的记法: 用一个大写英文字母

线段的记法:①用两个端点的字母来表示

②用一个小写英文字母表示

自己想办法表示射线,让学生充分讨论,并比较如何表示合理

射线的记法:

用端点及射线上一点来表示,注意端点的字母写在前面

直线的记法:

① 用直线上两个点来表示

② 用一个小写字母来表示

强调大写字母与小写字母来表示它们时的区别

(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

练习1:读句画图(如图示)

(1) 连BC、AD

(2) 画射线AD

(3) 画直线AB、CD相交于E

(4) 延长线段BC,反向延长线段DA相交与F

(5) 连结AC、BD相交于O

练习2:右图中,有哪几条线段、射线、直线

4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

学生通过画图,得出结论:过一点可以画无数条直线

经过两点有且只有一条直线

问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

为什么?(学生通过操作,回答)

小组讨论交流:

你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

适当引导:栽树时只要确定两个树坑的'位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

5、 小结:

① 学生回忆今天这节课学过的内容

进一步清晰线段、射线、直线的概念

② 强调线段、射线、直线表示方法的掌握

6、 作业:①阅读“读一读” P121

②习题4的1、2、3。4作为思考题

初中数学教案10

教学目标:

1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

2、收集统计在生活中应用的例子,整理收集数据的方法。

3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

教学过程:

一、课前预习,出示预习提纲:

1、我们学习了哪几种统计图?

2、这几种统计图各有什么特点?

3、概率的知识有哪些?

二、展示与交流

(一)提出问题

1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

2、师:先独立列出几个你想调查的问题。(写在练习本上)

3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)

4、接着全班汇报交流(师罗列在黑板上)

师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

(二)收集数据和整理数据

1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

2、师:开展实际调查的.话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

(三)开展调查

1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)

3、全班汇总、整理、归纳各小组数据。(板书)

4、师:分析上面的数据,你能得到哪些信息?

5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

6、师:根据这些信息,你还能提出什么数学问题?

(四)回顾统计活动

1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

3、结合生活中的例子说说收集数据有哪些方法?

(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来

的实例)来说说自己的方法。

(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

初中数学教案11

课题:一次函数

教学目标:1.知道一次函数与正比例函数的意义

2.能写出实际问题中正比例函数与一次函数关系的解析式.

3.掌握“从特殊到一般”这种研究问题的方法

教学重点:将实际问题用一次函数表示.

教学难点:将实际问题用一次函数表示.

教学方法:讲解法

教学过程:

一.复习提问

1.什么是函数请举例说明.

2.购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么

3.在上述式子中变量是谁.常量是谁自变量又是谁

二.讲解

在前面我们遇到过这样一些函数:

y=xs=30t

y=2x+3y=-x+2

这些函数都使用自变量的一次式来表示的,可以写成y=kx+b的形式

一般的,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.

特别的,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数.

例一:

一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.

(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;

(2)求3.5秒时小球的速度.

分析:v与t之间是正比例关系.

解:(1)v=2t

(2)t=3.5时,v=2×3.5=7(米/秒)

例二:拖拉机工作时,油箱中有油40升.如果每小时耗油6升,求油箱中的'余油量Q(升)与工作时间t(时)之间的函数关系式.

分析:t小时耗油6t升,从原油油量中减去6t,就是余油量.

解:Q=40-6t

课堂练习:

P961,2

小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来

作业:P971。2。3。4。

初中数学教案12

教学建议

一、知识结构

二、重点难点分析

本节教学的重点是同位角、内错角、同旁内角的概念、难点为在较复杂的图形中辨认同位角、内错角、同旁内角、掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础、

(1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对、

(2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截、也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线、

(3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角、要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系、

(4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系、

三、教法建议

1、上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示、

2、在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚、

3、这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础、

教学设计示例

一、素质教育目标

(一)知识教学点

1、理解同位角、内错角、同旁内角的概念、

2、结合图形识别同位角、内错角、同旁内角、

(二)能力训练点

1、通过变式图形的识图训练,培养学生的识图能力、

2、通过例题口答“为什么”,培养学生的推理能力、

(三)德育渗透点

从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点、

(四)美育渗透点

通过“三线八角”基本图形,使学生认识几何图形的位置美、

二、学法引导

1、教师教法:尝试指导,讨论评价、变式练习、回授、

2、学生学法:主动思考,相互研讨,自我归纳、

三、重点、难点、疑点及解决办法

(一)生点

同位角、内错角、同旁内角的概念、

(二)难点

在较复杂的图形中辨认同位角、内错角、同旁内角、

(三)疑点

正确理解新概念、

(四)解决办法

引导学生讨论归纳三类角的特征,并以练习加以巩固、

四、课时安排

1课时

一、教具学具准备

投影仪、三角板、自制胶片、

六、师生互动活动设计

1、通过一组练习创设情境,复习基础知识,引入新课、

2、通过学生阅读书本,教师设问引导,练习巩固讲授新课、

3、通过师生互答完成课堂小结、

七、教学步骤

(一)明确目标

使学生掌握“三线八角”,并能在图形中进行辨识、

(二)整体感知

以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知、

(三)教学过程

创设情境,复习导入

回答下列问题:

1、如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?

2、如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?

3、如图,三条直线 AB 、CD 、EF 交于一点 O ,则图中有几对对顶角,有几对邻补角?

4、如图,三条直线 AB 、CD 、EF 两两相交,则图中有几对对项角,有几对邻补角?

5、三条直线相交除上述两种情况外,还有其他相交的情形吗?

学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线 CD ,使 CD 与EF相交于某一点(如图),直线 AB 、CD 都与EF相交或者说两条直线 AB 、CD 被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的.关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系、

【板书】 2.3同位角、内错角、同旁内角

【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况、认识事物间是发展变化的辩证关系、

尝试指导,学习新知

1、学生自己尝试学习,阅读课本第67页例题前的内容、

2、设计以下问题,帮助学生正确理解概念、

(1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?

(2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?

(3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?

(4)同位角和同分内角在位置上有什么相同点和不同点?

内错角和同旁内角在位置上有什么相同点和不同点?

(5)这三类角的共同特征是什么?

3、对上述问题以小组为单位展开讨论,然后学生间互相评议、

4、教师对学生讨论过程中所发表的意见进行评判,归纳总结、

在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征( F 、Z 、U )判断问题就迎刃而解、

【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性、学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力、

投影显示(投影片2)

例题?如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?

(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?

[教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练、

变式训练,巩固新知

投影显示(投影片3)

【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是 c ,即 a b c 所截,如 c a 被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提、

投影显示(投影片4)

【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角、这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位、这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形、如第2题由已知条件结合所求部分,对各个小题分别分解图形如下:

投影显示(投影片5)

【教法说明】学生在较复杂的图形中,对找这一类的同位角,找这一类的内错角,找这一类的同旁内角有一定困难,为此安排本组选择题,有利于突破难点,第2题中学生对 C 、D 两个图形易混淆,要加强对比以便解决教学疑点。第3题让学生掌握三角形中的3对同旁内角。另外本组练习也为后面的练习打基础。

投影显示(投影片6)

【教法说明】本组题目是上组题的延伸,再次突破难点,提高学生思维的广度与深度、学生解决此类题常常因考虑不全面而丢解,要使学生养成全方位多角度考虑问题的习惯,第2题以裁线为标准分类求解,分别把 AB 、BD 、EF 看成是截线找三类角,这样既不遗漏又不重复、

(四)总结、扩展

1、本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角、

2、相交直线

3、教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?”

【教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结、可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。

八、布置作业

课本第72页B组第4题、

【教法说明】课本练习穿插在课堂练习中完成,故只留一道提高题,让学有余力的同学继续探究,提高学生思维广度

作业答案

4、答:(1)设 E BC 延长线上的一点,∠ A 与∠ ACD 、∠ ACE 是内错角,它们分别是由直线 AB 、CD 被直线 AC 截成的和直线 AB 、BE 被直线 AC 截成的。

(2)∠ B 与∠ DCE 、∠ ACE 是同位有,它们分别是由直线 AB 、CD 被直线 BE 截成的和直线 AB 、AC 被直线 BE 截成的。

初中数学教案13

一、素质教育目标

(一)知识教学点

1.掌握的三要素,能正确画出.

2.能将已知数在上表示出来,能说出上已知点所表示的数.

(二)能力训练点

1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

2.对学生渗透数形结合的思想方法.

(三)德育渗透点

使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

(四)美育渗透点

通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.

二、学法引导

1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.

三、重点、难点、疑点及解决办法

1.重点:正确掌握画法和用上的点表示有理数.

2.难点:有理数和上的点的对应关系。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

师生同步画,学生概括三要素,师出示投影,生动手动脑练习

七、教学步骤

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—(板书课题).

【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的`学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.

(二)探索新知,讲授新课

1.的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点原点表示0(相当于温度计上的0℃).

第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

让学生观察画好的直线,思考以下问题:

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。

初中数学教案14

(一)教材分析

1、知识结构

2、重点、难点分析

重点:

找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.

难点:

找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果那么”形式的'命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.

(二)教学建议

1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.

2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

(1)假命题可分为两类情况:

①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.

②题设有多种情形,其中至少有一种情形的结论是错误的.

例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:

第一种情形是两个内错角都等于90°,这时两直线平行;

第二种情形是两个内错角不都等于90°,这时两直线不平行.

整体说来,这是错误的命题.

(2)是否是命题:

命题的定义包括两层涵义:

①命题必须是一个完整的句子;

②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.

另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.

(3)命题的组成

每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果,那么”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.

有些命题,没有写成“如果,那么”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果那么”的形式.

另外命题的题设(条件)部分,有时也可用“已知”或者“若”等形式表述;命题的结论部分,有时也可用“求证”或“则”等形式表述.

初中数学教案15

教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2.初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1庇么数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2痹诖数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式北窘诳挝颐蔷屠匆黄鹧习这个问题

二、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律钡玜与b的`差指的是(a-b),而b与a的差指的是(b-a)绷秸呙飨圆煌,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和

分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个

三、课堂练习

1鄙杓资为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2庇么数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数

3庇么数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄

四、师生共同小结

首先,请学生回答:

1痹跹列代数式?2绷写数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备币求学生一定要牢固掌握

五、作业

1庇么数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2币阎一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:=99a+b(cm)

今天的内容就介绍到这里了。