高中数学教师教育教案(7篇)
高中是我国在初中九年义务教育结束后,更高等的教育机构,一般为三年制,高中仍属于中等教育范围,以下是小编准备的高中数学教师教育教案范文,欢迎借鉴参考。
高中数学教师教育教案精选篇1
教学目标
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案
2.1映射
教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.
教学重点难点::映射概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)
高中数学教师教育教案精选篇2
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:
求曲线的方程。
教学用具:
计算机。
教学方法:
启发引导法,讨论法。
教学过程:
【引入】
1、提问:什么是曲线的方程和方程的曲线。
学生思考并回答。教师强调。
2、坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。
【问题】
如何根据已知条件,求出曲线的方程。
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。
证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。
让我们用这个方法试解如下问题:
例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。
分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。
求解过程略。
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合
;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点。
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。
根据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
高中数学教师教育教案精选篇3
教学目标
知识与技能目标:
本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:
(1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。
(2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。
(3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:
导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k
在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。
过程与方法目标:
(1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。
(2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。
(3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。
情感、态度、价值观:
(1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;
(2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。
教学重点与难点
重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。
难点:发现、理解及应用导数的几何意义。
教学过程
一、复习提问
1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.
定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。
求导数的步骤:
第一步:求平均变化率导数的几何意义教案;
第二步:求瞬时变化率导数的几何意义教案.
(即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)
2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?
生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案
师:这就是平均变化率(导数的几何意义教案)的几何意义,
3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?
如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.
导数的几何意义教案
追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。
由导数的定义知导数的几何意义教案导数的几何意义教案。
导数的几何意义教案
由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。
C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.
二、新课
1、导数的几何意义:
函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.
即:导数的几何意义教案
口答练习:
(1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。
(C层学生做)
(2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)
导数的几何意义教案
2、如何用导数研究函数的增减?
小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。
同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。
例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。
导数的几何意义教案
函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)
3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.
例2求曲线y=x2在点M(2,4)处的切线方程.
解:导数的几何意义教案
∴y'|x=2=2×2=4.
∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.
由上例可归纳出求切线方程的两个步骤:
(1)先求出函数y=f(x)在点x0处的导数f'(x0).
(2)根据直线方程的点斜式,得切线方程为y-y0=f'(x0)(x-x0).
提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)
(先由C类学生来回答,再由A,B补充.)
例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;
(2)过P点的切线的方程。
解:(1)导数的几何意义教案,
导数的几何意义教案
y'|x=2=22=4. ∴在点P处的切线的斜率等于4.
(2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.
练习:求抛物线y=x2+2在点M(2,6)处的切线方程.
(答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).
B类学生做题,A类学生纠错。
三、小结
1.导数的几何意义.(C组学生回答)
2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.
(B组学生回答)
四、布置作业
1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。
2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.
3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角
4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;
(C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)
教学反思:
本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。
本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。
完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。
高中数学教师教育教案精选篇4
教学目标:
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义。
(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力。
教学重点:
子集、补集的概念
教学难点:
弄清元素与子集、属于与包含之间的区别
教学用具:
幻灯机
教学过程设计
(一)导入新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。
【提出问题】(投影打出)
已知__,__,__,问:
1、哪些集合表示方法是列举法。
2、哪些集合表示方法是描述法。
3、将集M、集从集P用图示法表示。
4、分别说出各集合中的元素。
5、将每个集合中的元素与该集合的关系用符号表示出来、将集N中元素3与集M的关系用符号表示出来。
6、集M中元素与集N有何关系、集M中元素与集P有何关系。
【找学生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(笔练结合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、__,__,__,__,__,__,__,__(笔练结合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题、
(二)新授知识
1、子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作:__读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:A__B或B__A、
性质:①__(任何一个集合是它本身的子集)
②__(空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合。
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素、由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例:__,可见,集合__,是指A、B的所有元素完全相同。
(3)真子集:对于两个集合A与B,如果__,并且__,我们就说集合A是集合B的真子集,记作:__(或__),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B。
【提问】
(1)__写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2)__判断下列写法是否正确
①__A__②__A__③__④A__A
性质:
(1)空集是任何非空集合的真子集。若__A__,且A≠__,则__A;
(2)如果__,__,则__。
例1__写出集合__的所有子集,并指出其中哪些是它的真子集、
解:集合__的所有的子集是__,__,__,__,其中__,__,__是__的真子集。
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“__”与“__”:元素与集合之间是属于关系;集合与集合之间是包含关系。如__R,{1}__{1,2,3}
②{0}与__:{0}是含有一个元素0的集合,__是不含任何元素的集合。
如:__{0}。不能写成__={0},__∈{0}
例2__见教材P8(解略)
例3__判断下列说法是否正确,如果不正确,请加以改正、
(1)__表示空集;
(2)空集是任何集合的真子集;
(3)__不是__;
(4)__的所有子集是__;
(5)如果__且__,那么B必是A的真子集;
(6)__与__不能同时成立、
解:(1)__不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确、空集是任何非空集合的真子集;
(3)不正确、__与__表示同一集合;
(4)不正确、__的所有子集是__;
(5)正确
(6)不正确、当__时,__与__能同时成立、
例4__用适当的符号(__,__)填空:
(1)__;__;__;
(2)__;__;
(3)__;
(4)设__,__,__,则A__B__C、
解:(1)0__0__;
(2)__=__,__;
(3)__,__∴__;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C、
【练习】教材P9
用适当的符号(__,__)填空:
(1)__;__(5)__;
(2)__;__(6)__;
(3)__;__(7)__;
(4)__;__(8)__、
解:(1)__;(2)__;(3)__;(4)__;(5)=;(6)__;(7)__;(8)__、
提问:见教材P9例子
(二)__全集与补集
1、补集:一般地,设S是一个集合,A是S的一个子集(即__),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作__,即
、
A在S中的补集__可用右图中阴影部分表示、
性质:__S(__SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则__SA={2,4,6};
(2)若A={0},则__NA=N;
(3)__RQ是无理数集。
2、全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用__表示。
注:__是对于给定的全集__而言的,当全集不同时,补集也会不同。
例如:若__,当__时,__;当__时,则__。
例5__设全集__,__,__,判断__与__之间的关系。
解:
练习:见教材P10练习
1、填空:
__,__,那么__,__。
解:__,
2、填空:
(1)如果全集__,那么N的补集__;
(2)如果全集,__,那么__的补集__(__)=__、
解:(1)__;(2)__。
(三)小结:本节课学习了以下内容:
1、五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)
2、五条性质
(1)空集是任何集合的子集。Φ__A
(2)空集是任何非空集合的真子集。Φ__A__(A≠Φ)
(3)任何一个集合是它本身的子集。
(4)如果__,__,则__、
(5)__S(__SA)=A
3、两组易混符号:(1)“__”与“__”:(2){0}与
(四)课后作业:见教材P10习题1、2
高中数学教师教育教案精选篇5
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
五、作业:
略
高中数学教师教育教案精选篇6
教材分析:
三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。
教案背景:
通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.
教学方法:
以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。
教学目标:
借助单位圆探究诱导公式。
能正确运用诱导公式将任意角的三角函数化为锐角三角函数。
教学重点:
诱导公式(三)的推导及应用。
教学难点:
诱导公式的应用。
教学手段:
多媒体。
教学情景设计:
一.复习回顾:
1. 诱导公式(一)(二)。
2. 角 (终边在一条直线上)
3. 思考:下列一组角有什么特征?( )能否用式子来表示?
二.新课:
已知 由
可知
而 (课件演示,学生发现)
所以
于是可得: (三)
设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。
设计意图:结合学过的公式(一)(二),发现特点,总结公式。
1. 练习
(1)
设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。
(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)
三.例题
例3:求下列各三角函数值:
(1)
(2)
(3)
(4)
例4:化简
设计意图:利用公式解决问题。
练习:
(1)
(2) (学生板演,师生点评)
设计意图:观察公式特点,选择公式解决问题。
四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。
五.课后作业:课后练习A、B组
六.课后反思与交流
很荣幸大家来听我的课,通过这课,我学习到如下的东西:
1.要认真的研读新课标,对教学的目标,重难点把握要到位
2.注意板书设计,注重细节的东西,语速需要改正
3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作
4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣
5.上课的生动化,形象化需要加强
听课者评价:
1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。
2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。
3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。
4.评议者:引导学生通过网络进行探究。
建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。
( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好
( 2)这样子的教学可以提高上课效率,让学生更多的时间思考
( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用
( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来
( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少
( 6)让学生多探究,课堂会更热闹
( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习
( 8)教学模式相对简单重复
( 9)思路较为清晰,规范化的推理
高中数学教师教育教案精选篇7
教学目标
(1)了解算法的含义,体会算法思想。
(2)会用自然语言和数学语言描述简单具体问题的算法;
(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。
教学重难点
重点:算法的含义、解二元一次方程组的算法设计。
难点:把自然语言转化为算法语言。
情境导入
电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:
第一步:观察、等待目标出现(用望远镜或瞄准镜);
第二步:瞄准目标;
第三步:计算(或估测)风速、距离、空气湿度、空气密度;
第四步:根据第三步的结果修正弹着点;
第五步:开枪;
第六步:迅速转移(或隐蔽)
以上这种完成狙击任务的方法、步骤在数学上我们叫算法。
课堂探究
预习提升
1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。
2、描述方式
自然语言、数学语言、形式语言(算法语言)、框图。
3、算法的要求
(1)写出的算法,必须能解决一类问题,且能重复使用;
(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。
4、算法的特征
(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。
(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。
(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。
(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。
(5)不唯一性:解决同一问题的算法可以是不唯一的
课堂典例讲练
命题方向1对算法意义的理解
例1、下列叙述中,
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;
③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12。
能称为算法的个数为( )
A、2
B、3
C、4
D、5
【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。
【答案】B
[规律总结]
1、正确理解算法的概念及其特点是解决问题的关键、
2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、
【变式训练】下列对算法的理解不正确的是________
①一个算法应包含有限的步骤,而不能是无限的
②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤
③算法中的每一步都应当有效地执行,并得到确定的结果
④一个问题只能设计出一个算法
【解析】由算法的有限性指包含的步骤是有限的故①正确;
由算法的明确性是指每一步都是确定的故②正确;
由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;
由对于同一个问题可以有不同的算法故④不正确。
【答案】④
命题方向2解方程(组)的算法
例2、给出求解方程组的一个算法。
[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、
[规范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程组可化为
第二步,解方程③,可得y=-1,④
第三步,将④代入①,可得2x-1=7,x=4
第四步,输出4,-1
方法二:算法如下:
第一步,由①式可以得到y=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,输出4,-1
[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。
2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。
【变式训练】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命题方向3筛选问题的算法设计
例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、
[思路分析]比较a,b比较m与c―→最小数
[规范解答]算法步骤如下:
1、比较a与b的大小,若a
2、比较m与c的大小,若m
[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。
【变式训练】在下列数字序列中,写出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一个数m,m=21;
2、将m与89比较,是否相等,如果相等,则搜索到89;
3、如果m与89不相等,则往下执行;
4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。
命题方向4非数值性问题的算法
例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。
(1)设计安全渡河的算法;
(2)思考每一步算法所遵循的共同原则是什么?