数学教案-双曲线的几何性质
数学教案-双曲线的几何性质
?§8.4 双曲线的几何性质(第1课时) ㈠课时目标 1. 熟悉双曲线的几何性质。2. 能理解离心率的大小对双曲线形状的影响。3. 能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。㈡教学过程(www.ixbw.com) [情景设置] 叙述椭圆 的几何性质,并填写下表:方程性质
图像 (略) 范围 -a≤x≤a,-b≤y≤b 对称性 对称轴、对称中心 顶点 (±a,0)、(±b,0) 离心率 e= (几何意义)
[探索研究] 1.类比椭圆 的几何性质,探讨双曲线 的几何性质:范围、对称性、顶点、离心率。 双曲线的实轴、虚轴、实半轴长、虚半轴长及离心率的定义。双曲线与椭圆的几何性质对比如下: 方程性质
图像 (略) (略)范围 -a≤x≤a,-b≤y≤b x≥a,或x≤-a,y∈R对称性 对称轴、对称中心 对称轴、对称中心顶点 (±a,0)、(±b,0) (-a,0)、(a,0)离心率 0<e= <1e= >1
下面继续研究离心率的几何意义:(a、b、c、e关系:c2=a2+b2, e= >1)2.渐近线的发现与论证根据椭圆的上述四个性质,能较为准确地把 画出来吗?(能)根据上述双曲线的四个性质,能较为准确地把 画出来吗?(不能)通过列表描点,能把双曲线的顶点及附近的点,比较精确地画出来,但双曲线向何处伸展就不很清楚。我们能较为准确地画出曲线y= ,这是为什么?(因为当双曲线伸向远处时,它与x轴、y轴无限接近)此时,x轴、y轴叫做曲线y= 的渐近线。问:双曲线 有没有渐近线呢?若有,又该是怎样的直线呢?引导猜想:在研究双曲线的范围时,由双曲线的标准方程可解出:y=± =± 当x无限增大时, 就无限趋近于零,也就是说,这是双曲线y=± 与直线y=± 无限接近。这使我们猜想直线y=± 为双曲线的渐近线。直线y=± 恰好是过实轴端点A1、A2,虚轴端点B1、B2,作平行于坐标轴的直线x=±a, y=±b所成的矩形的两条对角线,那么,如何证明双曲线上的点沿曲线向远处运动时,与渐近线越来越接近呢?显然,只要考虑第一象限即可。证法1:如图,设M(x0,y0)为第一象限内双曲线 上的仍一点,则y0= ,M(x0,y0)到渐近线ay-bx=0的距离为:∣MQ∣= =
= . 点M向远处运动, x0随着增大,∣MQ∣就逐渐减小,M点就无限接近于 y= 故把y=± 叫做双曲线 的渐近线。3.离心率的几何意义∵e= ,c>a, ∴e>1由等式c2-a2=b2,可得 = = = e越小(接近于1) 越接近于0,双曲线开口越小(扁狭) e越大 越大,双曲线开口越大(开阔) 4.巩固练习 求下列双曲线的渐近线方程,并画出双曲线。 ①4x2-y2=4 ②4x2-y2=-4 已知双曲线的渐近线方程为x±2y=0,分别求出过以下各点的双曲线方程 ①M(4, ) ②M(4, )[知识应用与解题研究]例 1 求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转而成的曲面,如图;它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m,选择适当的坐标系,求出此双曲线的方程(精确到1m)㈣提炼总结1. 双曲线的几何性质及a、b、c、e的关系。2. 渐近线是双曲线特有的性质,其发现证明蕴含了重要的数学思想与数学方法。3. 双曲线的几何性质与椭圆的几何性质类似点和不同点。