范文网 >教案大全 >数学教案 >人教版六年级下册数学教案

人教版六年级下册数学教案

留井 分享更新时间:
投诉

人教版六年级下册数学教案范文汇总5篇

作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。那要怎么写好教案呢?以下是小编收集整理的人教版六年级下册数学教案5篇,仅供参考,希望能够帮助到大家。

人教版六年级下册数学教案 篇1

第1课时

圆柱的认识

教学内容

人教版六年级下册教材第17页圆柱的认识、第18页例1和第19页例2。

内容简析

圆柱的认识:通过观察物体的形状,初步认识圆柱。

例1:通过观察圆柱,认识圆柱的侧面、底面和高。

例2:通过观察图形,掌握圆柱的侧面展开图。

教学目标

1.认识圆柱的侧面、底面和高;认识圆柱的侧面展开图,理解圆柱侧面展开图与圆柱的关系。

2.通过观察、发现、交流,让学生自主探究,掌握学习方法。

3.培养学生观察、比较和判断的能力,以及发现问题、分析问题和解决问题的能力。

教学重难点

重点:使学生掌握圆柱的基本特征,理解圆柱侧面展开图与圆柱的关系。

难点:圆柱侧面展开图与圆柱的关系,建立圆柱的空间观念。

教法与学法

1.在教法上,应加强直观演示和操作,利用多媒体课件从实物中抽象出圆柱的图形,帮助学生建立圆柱的表象,再让学生通过观察和操作,发现并总结出圆柱的特征。

2.在学法上,学生把观察和动手操作相结合,通过摸一摸、量一量、画一画等实践操作活动认识圆柱的特征。本节课也应以学生自主学习为主,加强小组合作与交流。

承前启后链

教学过程

一、情景创设,导入课题

实物展示法:

教师拿出一个做好的圆柱模型展示给学生,让学生摸一摸、看一看,初步感知圆柱;紧接着让学生观察这个圆柱的特征,观察圆柱的组成。(学生观察并独立思考)

学生1:圆柱由三部分组成:两个圆和一个曲面。

学生2:两个圆的面积相等。

学生3:……

教师表扬并鼓励学生的回答。【品析:用观察实物的方式导入,让学生看到了真实的物体,使学生对圆柱的印象更加深刻,同时用动作摸一摸更能吸引学生的学习兴趣。】

课件展示法:

1.课件出示“旋转门”的画面,引导联想:你看到了什么?想到了什么?(圆柱的形成)

我看到了旋转门,想到了它转起来会形成一个圆柱。

2.课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等。课件抽出圆柱的几何模型。

今天我们一起来研究圆柱。(板书课题)【品析:课件展示的效果是使图形更加形象具体,学生一目了然,对于图形的认识和理解更加准确和深刻,有助于学生对于圆柱的学习和研究。】

动手操作法:

让学生拿出所带的硬纸板、直尺、剪刀、圆规等学具,小组合作,教师引导动手制作圆柱的模型。

小组展示制作成果,教师给予评价。【品析:亲自动手操作制作圆柱模型不仅使学生更好地认识圆柱,而且让学生有一种喜悦的成就感。同时,对下面观察总结圆柱的组成和特征打下坚实的基础。】

二、师生合作,探究新知

◎教学例1

(1)整体感知圆柱

①谈谈圆柱,大家知道什么是圆柱吗?请同学说说你理解的圆柱。

②找找圆柱,请同学找出生活中圆柱形状的物体。

引导学生阅读观察教材第17页几个圆柱物体的图形,认识圆柱。

(2)教学例1:

出示教材第18页例1:观察一个圆柱形的物体,看一看它是由哪几个部分组成的,有什么特征。

①认识圆柱的面。

师:请同学摸摸自己手中圆柱的表面,说说你发现了什么。

师:指导看书,再次观察例1中的图形,引导归纳。(上、下两个面叫作底面,它们是完全相同的两个圆;圆柱的曲面叫侧面。)

②认识圆柱的高

引导学生观察例1中的圆柱,根据图形上的提示认识圆柱的高,再根据例1中的高找到自己手中圆柱的高。结合教材回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫作高)

讨论交流:圆柱的高的特点。

归纳小结并板书:圆柱的高有无数条,高的长度都相等。

总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

【品析:此教学环节先运用提问交流的方式引出认识圆柱,再联系生活实物模型,通过让学生动手操作观察自己所制作的圆柱模型来认识圆柱的组成和特征,使学生记忆更加深刻。】

◎教学例2:圆柱的侧面展开

(1)动手操作:请同学分小组拿出有商标纸的圆柱形实物,把商标纸剪开,再打开,观察商标纸的形状。

反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

(2)操作探究:展开的长方形的长和宽与圆柱的关系。

师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的'高。

(3)延伸发现:展开的平行四边形的底和高及正方形的边长与圆柱的关系。

(4)引导学生自主阅读并观察教材第19页例2。

总结:长方形的长就是圆柱底面的周长,宽就是圆柱的高。

【品析:此环节在探索学习的过程中,教师为学生创设动手实践的机会,给学生足够的时间进行操作与思考,让学生获得丰富的活动体验,让学生动手操作推导出圆柱侧面展开后是一个长方形,长方形的长等于底面周长,宽等于圆柱的高。通过这样的活动体验,让学生经历学习数学的过程。】

三、反馈质疑,学有所得

在认识了圆柱,学习完例1、例2的基础上,让学生及时消化吸收,教师提出质疑,师生共同系统整理。

质疑一:圆柱是由几部分组成的?圆柱有什么特征?

师生共同总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

质疑二:圆柱的侧面展开后是什么形状?长方形的长、宽与圆柱有什么关系?

师生共同总结:圆柱侧面展开后得到一个长方形。长方形的长就是圆柱底面的周长,宽就是圆柱的高。

四、课末小结,融会贯通

同学们,今天我们认识了圆柱,学习了圆柱的基本特征和圆柱的侧面展开图,你能说说你的收获吗?找两个学生畅谈本课时的收获,教师对其进行补充完成课堂的小结。

师生共同总结:

1.圆柱的组成及特点:圆柱是由3个面组成的。圆柱的上、下两个面叫作底面;圆柱周围的面(上、下面除外)叫作侧面;圆柱的两个底面之间的距离叫作高。圆柱的底面都是圆,并且大小一样。圆柱的侧面是一个曲面。

2. 圆柱的侧面展开图:圆柱的侧面沿高展开是一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。衔接下一节课的学习内容,给大家留一个思考的话题:

什么叫作圆柱的表面积?包括哪几个面?

五、教海拾遗,反思提升

回味课堂,发现亮点之处:两次质疑的讨论使学生的学习进入了二次消化吸收的过程,这次内化把圆柱的基本特征和圆柱的侧面展开图的有关知识真正掌握了。

反思过程,有待改进之处:在教学中,应多给予学生动手实践的机会,给学生足够的时间进行操作和思考的同时,教师应进行相应的提问,这样学生学习的印象才能更深刻,学习的知识才会更扎实。

人教版六年级下册数学教案 篇2

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的`高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版六年级下册数学教案 篇3

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的'内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

人教版六年级下册数学教案 篇4

教材分析:

本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

学生分析:

在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。

学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的`位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。

教学目标:

1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

2、通过活动培养学生利用小组合作,探究解决问题的能力。

3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

教学重点:运用圆的有关知识计算。

教学难点:

结合具体问题,让学生独立思考,提高解决简单问题的能力。

关键:体会数学知识在体育中的应用。

教学过程:

一、汇报调查,引入课题(8分钟)

1、汇报调查情况

课前,我让大家调查运动场的情况,你们得到了哪些信息?

2、课件显示如下情境图:

师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。

师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。

3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。

二、结合实例、探究问题(24分钟)

实例一:

课件显示:

淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?

(1)笑笑所走路线的半径为10米,她走过的路程是()米。

(2)淘气所走的路线半径为()米,他走过的路程为()米。

(3)两人走过的路相差()米。

1、理解题意

根据这幅情境图,你能获得哪些信息?指名回答。

2、小组讨论

先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。

3、全班交流

抽生汇报,教师板书。

实例2:

课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)

1、观察跑道由哪几部分组成?

2、在跑道上跑一圈的长度可以看成是哪几部分的和?

(板书:跑道一圈长度=圆周长+2个直道长度)

(二)简化研究问题:

1、85.96米是指哪部分的长度?一条直道吗?

2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

(三)寻求解决方法:

1、左右两个半圆形的弯道合起来是一个什么?

2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

(四)、动手解决问题:

1、计算圆的周长要知道什么?(直径)

2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。

引导学生将3.14159换成进行计算

汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。

4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米

师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。

三、巩固练习、实践应用(3分钟)

400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

四、拓展延伸、自我评价(5分钟)

1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

2、课后自学课本第45页你知道吗?

五、全课小结:

谈一谈,这节课你有什么收获?

六、布置作业

人教版六年级下册数学教案 篇5

教学内容:

抽取游戏

教学目标:

1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:

抽取问题。

教学难点:

理解抽取问题的基本原理。

教学过程:

一、教学例

盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

1.猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2.实验活动。

(1) 一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2) 一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3.发现规律。

启发:摸出球的`个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做

第1题。

(1) 独立思考,判断正误。

(2) 同学交流,说明理由。

第2题。

(1) 说一说至少取几个,你怎么知道呢?

(2) 如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习

完成课文练习十二第1、3题。