2023年云南高考数学试卷及答案
2023新课标高考二卷数学考试难度有所提高,那么关于2023年云南高考数学试卷怎么做呢?以下是小编准备的一些2023年云南高考数学试卷及答案,仅供参考。
云南高考数学试卷及答案
微信搜索关注公众号:得道AI填报
温馨提示:看完整版及各省份高考试卷真题,可下载全文查看或微信搜索公众号【得道AI填报】,关注后在对话框回复【高考真题】即可获取。
高考数学必背考点
一、正余弦定理
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc__cosA
二、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
三、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
四、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
五、和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高考数学答题技巧
1.妙用数学思想
数学客观题有60分,它的特点是只要答案,不要过程,有人戏称为不讲理的题,正因为不要写出道理,就要讲究解题策略,而不必每题都当解答题去解。考生可以动用三大法宝:排除法、特殊值法、数形结合法。
如已知|a|1,|b|1,|c|1,则ab+bc+ca与-1的大小关系是______。
用特殊值法,取a=b=c=0,立得ab+bc+ca-1。若把它当成解答题来解,有些学生可能不会做,或者即使会做也要浪费好多时间。
2.力求最简解法
有的问题有简捷的解法,但有些学生往往拿到题目后不认真思考,随便想到一种方法就解,结果要么是繁得做不下去,要么解题过程中出现运算错误,即使勉强解出结果,却用了大量时间。
因此,考生拿到题目不要急于落笔,先找出比较简单的方法再解题,既能准确算对,又能节省时间,否则会陷于欲进不能、欲罢不忍的尴尬状态。由繁变简,关键在于不墨守成规。改变一下思维方式,可以使问题的解答变得异常简单。
高考数学常考题型和解题技巧
1.解决绝对值问题
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:
①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3.配方法
利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法
解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
设元一换兀一解兀一还元
5.待定系数法
待定系数法是在已知对象形式式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写
6.复杂代数等式
复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:
(-----)(----)=0两种情况为或型
②配成平方型:
(----)2+(----)2=0两种情况为且型
数学中两个最伟大的解题思路
求值的思路列欲求值字母的方程或方程组
2)求取值范围的思路列欲求范围字母的不等式或不等式组
高三数学复习工作计划
根据本学期的复习任务,将本学期的备考工作划分为以下四个阶段:
第一阶段(专题复习):从20__年2月15日~20__年4月27日完成以主干知识为主的专题复习;
第二阶段(综合演练):从20__年4月28日~20__年5月18日完成以训练能力为主的综合训练;
第三阶段(自由复习):从20__年5月-----日~20__年5月----日完成以自我完善为主的自主复习;
第四阶段(强化训练):从20__年5月-----日~20__年6月03日。
第一阶段:专题复习(20__.2.17~20__.4.27)
(一)目标与任务:
强化高中数学主干知识的复习,形成良好的知识网络。强化考点,突出重点,归纳题型,培养能力。
根据高考试卷中解答题的设置规律,本阶段的复习任务主要包括以下七个知识专题:
专题一:集合、函数、导数与不等式。
此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。
专题二:数列、推理与证明。
数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。
专题三:三角函数、平面向量和解三角形。
平面向量和三角函数的图像与性质、恒等变换是重点。近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。平面向量具有几何与代数形式的双重性,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。
专题四:立体几何。
注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。
专题五:解析几何。
直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。近几年高考中圆锥曲线问题具有两大特色:一是融综合性、开放性、探索性为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。
专题六:概率与统计、算法与复数。
要求学生具有较高的阅读理解和分析问题、解决问题的能力。高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。
专题七:系列选讲。
包括极坐标与参数方程、不等式选讲
(二)方法与措施:
1、任务完成要求
把专题内容包含的考点或题型划分为若干课时,本专题内容的考情简析,专题知识要点融合,近五年真题回放,选题要以常规题型为主,注重知识之间的交叉、渗透和综合,严格控制解答题难度,中低档题的比例应占到80%左右,要有利于中等学生水平的提升;所选参考书上的例题及作业题要有详解答案。
2.强化集体学习。
认真研读《考试大纲》,研究学习20__年数学学科《考试说明》,认真研究各地模拟卷,准确掌握各章内容的高考要求,以便在学习中把握方向;每位高三考生要把近3年的新课程高考试卷重做一遍,仔细剖析每类题的题型特点,考查重点、考查方向、命题规律,弄清试题的变化分布规律,分析总结出共同的特征,收集整理出有用的高考信息,提高自身解题能力并制定相应的有针对性的复习方案;
3.抓好两课(即复习课、习题讲评课)
(1)听复习课力求做到:
①系统性:将老师所讲的`知识前后衔接,梳理归纳成串;
②综合性:将各间章节,和题型纵横联系,知识交叉,多角度、多层次;
③基础性:着眼双基,中档为主,面向多数;
④重点性:突出主干知识,把重点知识有详有略进行巩固与总结,以便复习之用。
(2)听习题评讲课应该做到:
①针对性:抓住各种题型的方法,消除疑问,解其多难;
②诊断性:找出失分原因,找出正确思路,总结方法,以防重犯;
③辐射性:以点带面,画龙点睛,举一反三;
④启发性:启发思维,点拨思路,发散开拓。
4.落实好常规学习,抓好学习过程中的各个环节。
课堂中,能自己能解决的就自己解决;把握好每一次自习课,遇到问题及时向老师提出,认真对待每一科,每一次的作业,在答题时做到表述规范及计算准确。
5.切实抓好强化训练,注重知识的巩固和滚动
每章一次综合测试、每月一次月考、对每次训练要做到及时总结,发现问题,查漏补缺,及时反馈。并同时要反思错解原因,以达到巩固知识,提高能力的目的,力争做到练有所得,听有所获。
做练习量要求限时完成,认真作答。一是强化学科能力训练,有意识地提高自身综合运用知识分析、解决实际问题的能力,提高自身的思维能力;二是培养规范、完整、准确地答题习惯 。
6.处理好模拟考试和专题复习的关系
除了正常的考后试卷分析,我们对每次考试、练习都要分析自己知识点的得分情况,分析各次考试自己的得分点是否有变化、有提高,并采取相应措施。把能够得分的题型通过考后练习、讲评后一一突破。 要有目的解决学习中存在的一些突出问题。
7.注重心理训练。
学习实力与心理状态是高考成功的两大基本要素,良好的心态是高考制胜的法宝。有意识的锻炼自己心理素质,增强应变能力和知识迁移能力,提高应试技巧。
此阶段的学习要特别注意研究各地的模拟试题,细心揣摩,进一步加强对重点内容,学科思想,学科方法的研究,密切关注知识的交叉点和结合点,关注新课程的新重点,牢牢把握好复习的方向;此阶段还要解决好热点问题-开放型问题、探索性问题、存在性问题等。
第二阶段:综合演练(从20__.4.28~20__.5.18)
(一)目标与任务:模拟训练,强调规范,查找问题,完善提高;
(二)方法与措施:根据各地的高考拟模拟试卷,通过规范训练,训练考试技巧和学生的应试心理,发现平时复习的薄弱点和思维的易错点,提高实战能力,走近高考。
该阶段需要解决的问题是:
1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。
2、检查复习的知识疏漏点和解题易错点,探索解题的规律。
3、检验知识网络的生成过程。
4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。
通过应试技能的训练,在考试中要求学生注意如下几点:
1.容易题争取不丢分规范表述少跳步
2.中等题争取少丢分得分点处写清楚
3.较难题争取多拿分知道一点写一点
4.克服会而不对,对而不全的问题
第三阶段:自由复习(20__.5)
(一)目标与任务:自由复习,自主整理,要求回归课本,回归基础,收拢、巩固已有知识,同时进行适度训练做好心理的调试,逐步达到最佳状态。
(二)方法与措施:制定出自由复习和考前计划。参考教师建议,自主复习,主动做到:
1.检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练。
2.抓思维易错点,注重典型题型及解题方法。
3.浏览自己以前做过的习题、试卷、改错本,回忆自己学习相关知识的历程,做好再纠错工作。
4.不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。
第四阶段(强化训练)
常考知识点必须过关,对相关题型熟练,做到有的放矢。
四、复习进度表
第一阶段专题复习
专题内容课时
专题一集合与常用逻辑用语、复数与算法4
专题二不等式、函数与导数12
专题三三角函数、解三角形、平面向量10
专题四数列、推理与证明10
专题五立体几何7
专题六解析几何10
专题七概率与统计7
专题八选修系列10