范文网 >资料大全 >综合资料 >交换律教学设计

交换律教学设计

旧模样 分享更新时间:
投诉

交换律教学设计

作为一位杰出的教职工,常常需要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写才好呢?下面是小编为大家整理的交换律教学设计,仅供参考,欢迎大家阅读。

交换律教学设计1

教材分析

学生在前几年的学习中对乘法交换律已经有了初步的认识,知道了两个因数交换位置积不变的知识,这节课是正式概括出任意两个例子让学生观察,从中发现对任意两个整数相乘有同样的性质,进而总结出“乘法交换律”这个术语。

1和0在乘法中都具有特殊性,要通过让学生进行口算观察,让学生明白、发现特殊的地方

本节课主要是让学生在观察、比较、讨论、概括、应用中学习知识。

学情分析

乘法交换律的教学要敢于放手让学生自主探索,通过计算从几组算式间的联系发现并总结规律,逐步概括出乘法的交换律,最后抽象出用字母表示的定律。它是由学生经过自己探索得到的',在学生心中就有实感,有了实感就有认识,有了认识就有理解学生理解了才能运用,理解得透彻就能熟练运用。

教学目标

1,使学生理解和掌握乘法交换律,并能运用它进行验算。

2,借助观察、比较、概括等方法培养学生的分析推理能力。

3,培养学生运用新知识解决实际问题的能力。

教学重点和难点

教学重点:使学生理解并运用乘法交换律。

教学难点:乘法交换律的熟练使用。

教学过程

一,猜谜引入

1,猜谜:“兄弟四五个,各有各的家,有谁走错门,让人笑掉牙。”

让学生回答谜底(纽扣)

师:你为什么会想到纽扣?

生:(因为扣错纽扣了,衣服穿出去会让人笑话)

师:纽扣交换了位置会闹笑话,我们刚学了什么运算定律也和交换位置有关系?谁愿意把加法交换律说给同学们听?

(要求举例说明,并用字母表示)

2,师:今天我们一起来学习乘法有哪些运算定律,谁愿意猜猜?

学生:可能有乘法交换律和乘法结合律。

师:你们怎么会想到有乘法交换律和乘法结合律的?

学生:(根据加法中的运算定律来猜的)

师:你们能根据加法中的运算定律,大胆来猜想乘法中有什么运算定律,

这份勇气是值得肯定的也是值得表扬的,那么你们认为什么是乘法交换律,什么是乘法结合律呢?

(让学生说一说,能说多少就多少)

二,验证猜想

验证乘法交换律

1,师:同学们说得好像有道理但是你们的猜想到底对不对?乘法是不是具有你们猜想的运算定律呢?怎样确认你们自己的猜想呢?

你们想不想自己来亲自验证一下呢?

好,下面我们就来研究“乘法交换律”,我们分组合作完成这个光荣而又有意义的任务。

(要求:独立思考,想出自己的验证方法,把它写下来)

每人都把自己的想法告诉自己的合作伙伴。

比一比,看谁的验证方法最好,让他作为组代表向全班汇报。

2,学生分组研究,教师巡视指导。

3,汇报

学生可能出现的情况:

(1)我们小组经过讨论认为乘法有交换律,比如:3×5=5×3,6×2=2×6等等,两个因数的位置变了,但它们的积不变.

(2)我们也找了两个数,将它们相乘发现两个因数的位置变了,但它们的结果是相等的.

(3)我们小组也认为乘法有交换律,比如,我们班有四个小组每组有9人,求全班有多少人?可以列成算式:4×9=36,也可以用9×4=36来计算.这就是说4×9=9×4,因此乘法和加法一样有交换律.

(4)根据乘法口诀,一句乘法口诀可以算两道乘法算式,如四七二十八能算4×7=28,7×4=28.

(5)我们想到的是乘法验算时,交换因数的位置再乘一遍积是一样的,所以乘法有交换律.

(6)解决问题时,一个问题可以列两个算式,.

(7)看图列式时,一个图也可以列两个算式..

(教师根据学生发言板出算式)

师:(总结方法)有没有不同意见?(如有不同意见的,请认为乘法没有交换律的同学发言)

师:看来乘法确实有交换律,我们的数学家也通过大量的研究证明乘法是有交换律的,你们一样很了不起.

师:经过刚才的研究和验证,你们现在能用自己的语言描述一下“乘法交换律”吗?

(两个数相乘,交换两个因数的位置,积不变)

你们能用字母来表示这个运算定律吗?板书:a×b=b×a

三,课堂练习

第35页做一做

四,课堂总结

今天的学习你有什么收获?需要注意什么问题?

交换律教学设计2

教材分析:

教材的安排是先教学加法的运算律,再教学乘法的运算律;先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,加法运算律的教学方法和学习活动可以迁移到乘法运算律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。

学情分析:

本节课的新知识在以前的数学学习中有相应的认知基础,学生能利用主题图的故事性,逐步生成连贯的情境,逐步生成后续的问题,通过观察比较,探究归纳的方法,理解和掌握加法运算定律,并要学会用字母来表示,由感性认识上升到一定的理性认识,遵循认知规律。反过来,新知识又促进了学生更深入地认识原来学过的知识与方法。例如,交换加数的'验算方法,加法中的“凑整”计算,等等。过去只知道这样做,现在知道了它们的依据,这种“再认识”对于加深新知识的巩固和记忆,是很有帮助的。

教学目标:

一、情感态度与价值观:培养学生抽象概括的能力,引导学生由感性认识上升到一定的理性认识。

二、过程与方法:通过观察比较、归纳的方法,来进行教学。

三、知识与技能:

1.引导学生探究和理解加法交换律、结合律

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点和难点:

教学重点:引导学生探究和理解加法交换律、结合律。教学难点:加法运算的交换律、结合律在计算中的应用。

教学过程:

(一)导入新授

1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!

2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)

3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现第一环节

探索加法交换律

1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”

学生口头列式,教师板书出示:40+56=96(千米)

56+40=96(千米)

你能用等号把这两道算式写成一个等式吗?

40+56=56+40

你还能再写出几个这样的等式吗?

学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。

全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。

可以用符号来表示:△+☆=☆+△;

可以用文字来表示:甲数十乙数=乙数十甲数。

3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?

a+b=b+a

教师指出:这就是加法交换律。

4、初步应用:在()里填上合适的数。37+36=36+()305+49=()+305

b+100=()+b 47+()=126+()

m+()=n+()13+24=()+()第二环节

探索加法结合律

1、课件出示教材第18页例2情境图。

师:从例2的情境图中,你获得了哪些信息?

师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?

学生独立列式,指名汇报。

汇报预设:

方法一:先算出“第一天和第二天共骑了多少千米”:

(88+104)+96

=192+96

=288(千米)

方法二:先算出“第二天和第三天共骑了多少千米”:

88+(104+96)

=88+200

=288(千米)

把这两道算式写成一道等式:(88+104)+96=88+(104+96)

2、算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。

集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?

(a+b)+c=a+(b+c)

教师指出:这就是加法结合律。

4、初步应用。

在横线上填上合适的数。(45+36)+64=45+(36+)(560+)+

=560+(140+70)(360+)+108=360+(92+)(57+c)+d=57+(+)

(三)巩固发散

1、完成教材第18页“做一做”。

学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。

2、下面各等式哪些符合加法交换律,哪些符合加法结合律?(1)470+320=320+470(2)a+55+45=55+45+a(3)(27+65)+35=27+(65+35)(4)70+80+40=70+40+80(5)60+(a+50)=(60+a)+50(6)b+900=900+b

3、下面的算式运用了哪些加法运算定律?

4、课本P19练习1至5

(四)评价反馈

通过今天这节课的学习,你有哪些收获?

师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。

交换律教学设计3

【教学内容】

人教版《义务教育课程标准实验教科书·数学》四年级下册第27、28页的内容及练习题。

【教学目标】

1.探索和理解加法交换律,并能灵活运用。

2.感受数学与现实生活的联系,并能用所学知识解决简单的实际问题。

【教学重难点】

从现实的问题情景中抽象概括出加法交换律。

【教学过程】

一、创设情境,提出问题

师:同学们,今天是什么节日?

生:植树节。

师:对呀,春天是植树的季节(展示课件)。咱们学校也组织了植树活动,一共有多少名同学参加这次活动?它们一共要植多少棵树?你们想不想知道?

生:想。

师:(展示课件)这是我们学校植树的信息。

①这次参加植树活动的男生有36名,女生有22名。

②男生要植树60课,女生要植树44棵。

你能算出有多少名同学参加植树活动,一共要植多少棵树吗?

[评析:在课的开始,教师能够创造性地利用教材,创设了植树节的情境。这样处理贴近学生生活实际,情景、条件、问题学生都十分熟悉,在这种轻松的气氛中,更有利于学生对知识的学习。]

二、自主探究,寻找规律

(一)体验加法的意义

师:请你在练习本上做一做(做完的可以同桌交流)。

生汇报,师板书。

①36+22=58(名)22+36=58(名)

②60+44=104(棵)44+60=104(棵)

师:这两个问题都是用加法计算的,谁来说一说,你为什么要用加法?

学生说想法。

师小结:这两道题都是要把两个数合并成一个数,就要用加法计算。

师:在日常生活中,哪些问题还要用到加法来计算,谁来举一个例子。

一生举例并例式解答。(师板书)

师:生活中像这样用加法解决的问题多不多?说一个给同桌听听。

[评析:结合现实生活情境,体会加法的意义。]

(二)教学加法交换律

师:现在请同学们观察这三组算式,你能发现些什么?把你的发现在小组内交流一下。

小组交流汇报。

(学生汇报时,让学生结合第一组算式说一说,师根据学生的汇报板书:36+2222+36)

师:大家看,这两个加数交换了位置,和相等。这两个算式可以怎么样?(板书:=)

师:第二组算式可以怎样写?

(生答,师板书:60+44=44+60)

第三组算式呢?根据学生的回答,师板书。

师:大家看,这几个小组总结出了这几道算式中的两个加数交换了位置以后,它们的和不变。你们小组的结论和它们一样吗?谁能再来说一说。

师:这三组算式都是两个加数交换了位置,它们的和没有变。是不是任意的两个数相加,都有这么一个规律呢?谁能来任意说两个数?

生:38+56。

师:咱们一起来验证一下。

师板书:

师:这两个数相加符合这个规律,其余的数是不是也有这个规律,请同学们先自己在练习本上举几个例子验证一下,然后在小组内交流一下,好吗?

小组交流,汇报。师板书。

师:刚才这么多的小组说出了这么多的'算式,哪个小组还愿意把你们的结论告诉同学们?

师:刚才,经过同学们的努力,发现了不管这两个加数是什么,只要两个加数交换了位置,它们的和不变。我们把这个规律叫做加法交换律。(板书)

学生齐读一遍。

师:这就是今天要学习的内容。(板书课题:加法交换律)

[评析:在学习加法交换律时,遵循先观察,再交流,让学生初步感知规律;再举例验证,进而发现总结规律,这样一个思路来教学的。在这个过程中,让学生经历知识的形成过程,感受到成功的喜悦,课堂氛围和谐、活泼、宽松。]

(三)学习用喜欢的方法表示

师:刚才是咱们自己发现了加法的这个重要的规律,你能不能用喜欢的方法表示出来?

师:先把你的想法和同桌交流一下。谁来说一说你的想法。

生汇报,师板书:

a+b=b+a(师:你能告诉同学们a、b分别表示什么吗?提示学生这两个字母可以是任意的两个数。)

甲+乙=乙+甲

△+○=○+△

师:同学们说出了这么多的办法,通常情况下,我们可以用字母表示。学生齐读一遍(a+b=b+a)。

[评析:学生用喜欢的方法表示规律,有利于培养学生的符号感,提高了知识的`抽象概括程度,为以后正式教学用字母表示数打下初步基础。]

(四)加法的应用

师:咱们知道了加法交换律,并且会用自己喜欢的方法来表示。请同学们想一想,以前学过的知识中哪些地方用到过加法交换律?

生:验算加法时。

三、练习

师:通过努力,同学们又学会了新的知识,掌握了新的本领,老师真为你们高兴,你们呢?还有更高兴的事情呢。

(展示课件)你们看,森林王国里的小鸟和小鸭,想和同学们来交朋友,你们愿意吗?不过他们可是有备而来,先看看大家的真本领。怎么样,敢不敢来试一试?

(课件)一、你能在括号里填上合适的数吗?试试看吧。

766+589=589+()

300+600=()+()

257+()=474+257

()+55=55+420

a+15=()+()

()+65=()+35

二、仔细看一看,下面的算式符合加法交换律吗?

270+380=380+270

b+800=800+b

三、运用加法交换律,你能写出几个算式?写写试试吧。

25+49+75=()+()+()

学生写出算式以后,让学生观察这些算式,哪两个数交换了位置,在这些算式中,你认为哪一道计算起来比较简单?说说你的想法。

师:小鸟和小鸭的问题都解决了,它们高兴得不得了,想请同学们参观它们的家园,高兴吗?(课件展示)

[评析:通过这些题目,既巩固了今天学的新知识,又发展了学生的思维,为后面的学习做了铺垫。]

四、小结

这节课你学到了哪些新知识?

【总评】

1.这节课真正把知识的形成过程真实地呈现给了学生。

2.真实地体现了学生的思想过程。

让学生用自己喜欢的方法把交换律表示出来,在他们得出了加法交换律后,让他们用自己喜欢的方法表示出来,如有的学生说可以用猴子表示一个加数,用兔子表示另一个加数,这个过程把学生那种真实的童稚的想法完全地表现了出来,他们决不拘限于用字母表示数,而是用哭脸、笑脸、太阳、月亮、颜色来分别,这是我们大人常想不到的。

3.教给学生探究数学的方法,遵循了这样一条教学主线:那就是发现规律、验证规律、应用规律。

在教学加法交换律时,先引导学生从实际的植树生活中发现规律,再引导学生验证这个规律,最后应用规律来解决一些问题,这也是探究数学的一种很好的方法,学生如果能真正掌握这种方法,并能把这种方法应用到以后的学习生活中,那可以说受益终生。

交换律教学设计4

一、教学内容:

北师大版四年级上册数学第二单元p45-p46

二、教学目标:

1、经历探索过程,发现乘法结合律和交换律,并用字母表示。

2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。

3、感受数学探索的乐趣,培养自主探索问题的能力。

三、教学重、难点

1、重点:探索、发现、理解和应用乘法结合律和交换律。

2、难点:乘法结合律和交换律的探索过程。

四、教学过程

(一)口算比赛,激发学习兴趣

1、出示口算题

5×225×425×8125×8

2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。

3、谈话引入:我们在前面已学过乘法的.计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?

(二)创设情境,发现问题

1、多媒体出示情境图

2、估一估

师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?

3、算一算

师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。

4、交流算法。

师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。

师板书:(3×5)×4=60(个)

3×(5×4)=60(个)

(三)比较算式的特点,发现规律

1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?

2、学生汇报:略

3、小结:(3×50)×4=3×(5×4)

(四)提出假设,举例验证

1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。

2、学生举例

同桌之间互相交流?

3、集体交流

谁愿意介绍一下你们小组举例的情况?

(五)概括规律

1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?

2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?

板书(a×b)×c=a×(b×c)

板题:乘法结合律

(六)运用规律,解决问题

1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?

2、看来运用乘法结合律可以使一些计算简便。

3、练习:p46“试一试”的题目

学生独立完成,集体订正。

(七)探索乘法交换律

1、出示两组数据

4×5=5×412×10=10×12

2、师:认真观察,看看你有什么新发现?

3、学生汇报。

4、学生举例验证。

师:你能举出像这样的例子吗?

5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?

6、板书:a×b=b×a

板题:乘法交换律

三、巩固练习

1、(完成课本第46页练一练第1题)

学生口答,集体订正。

2、应用乘法结合律和交换律,快速计算下面各题。

25×17×413×8×128(25×125)×(8×4)

(1)学生独立完成,个别板演。

(2)订正时让学生说说运用什么运算定律。

四、总结:这节课你有什么收获?

五、学生读课本第45、46页,质疑。

六、作业:课本第46页第2题。

乘法结合律 乘法交换律

交换律教学设计5

教学目标

1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力 ,培养学生的符号感。

3、让学生在数学活动中获得成功的'体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点

理解加法的运算律。

教学难点

概括加法的运算律,尝试用字母表示。

教学过程

一、教师适当引导,进入新知。

二、教学加法交律。

1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。

板书算式。

2、比较这两道算式有什么不同?

3、得数相同的算式我们可以用等号把它们连成等式。

4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。

5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。

6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母

学生思考,充分发表自己意见,教师给予肯定。

7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:

引出:加法交换律(板书)

8、小练习:填数

三、教学加法结合律。

1、过渡:刚才我们一起动脑,有了很多发现,大家真不简单。现在我们再来解决一个问题,看看会有哪些收获?课件出示

2、列式解答,利用题意追问算式含义,并相机加括号表示先算。还可能先算什么?说算式含义

3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。

4、出示书上题目,说一说,算一算。

5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。

6、你能不能再举几个例子?学生举例。

7、教师小结,引出:加法结合律(板书)。如果用a、b、c分别表示这三个加数,加法结合律可以表示成?

8、小练习:填数。

四、总结新知,组织练习。

1、刚才我们学习了加法交换律和加法结合律,它们都是运用在加法中的规律。师总结。

2、课后练习:

(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。

(2)比较体会运算律的作用,知道凑整百。

(3)凑整百小练习。

交换律教学设计6

教学内容:

北师大版第7册

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。教学重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。

教学难点:

学生将实际问题抽象为用字母表示的一般规律,熟练掌握简便运算的一般规律和基本技巧。

教学过程:

一、创设情境,导入新课,学习加法交换律

1、课间操时间,大家都在进行自己喜欢的体育项目,大家说说你在操场上喜欢玩什么?来看看图中的小朋友在干什么?提问:从这张图片中,你获得了哪些数学信息?

你能提出哪些数学问题?(提示:今天主要研究加法运算)根据学生的回答,出示:①参加跳绳的一共有多少人?

②参加活动的一共有多少人?

2、我们先来解决第一个问题:参加跳绳的一共有多少人?

学生独立列式,指名回答,教师板书(28+17=45 17+28=45)仔细观察,比较一下这两个算式有什么是相同的有什么是不同的?它们的结果呢?(两个加数相同,都是28和17,加数的位置不同,计算结果相同)

你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28为什么能用等号连接起来呢?指出:这两个算式都表示两个数相加,尽管加数的'位置发生了变化,但和不变,所以可以用加号连接.你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师随机板书算式,并追问:这样的算式能写几个?

3、我们再仔细的观察这几个算式,,两个数相加时会有什么样的规律呢?象这样的算式还有多少?也就是说任何两个加数相加都存在这样的规律.你们能结合上节课总结乘法交换律和乘法结合律的方法用一个算式来表示你们的新发现吗?

教师巡视,并作相应的辅导,在学生交流,板书:a+b=b+a。

4、教师小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。二.组织练习

完成练习题。下面我们再来研究加法中的另一个规律。

三、学习加法结合律

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

3、学生回答,教师有意识地板书:

(28+17)+23=68(人)28+(17+23)(28+23)+17=68(人)28+(23+17)让回答的同学说说这么列式是怎么思考的?

下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

4、那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)

5、出示:下面的Ο里能填上合适的符号吗?(30+10)+50Ο30+(10+50)(27+23)+47Ο27+(23+47)

6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后全班再交流,教师:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

8、渗透简便运算。计算比赛:两位同学上前比赛,不写过程,直接写得数,看谁速度快!

甲同学计算45+(88+12),乙同学计算(45+88)+12,30秒时间到!停笔!我宣布,甲同学快!乙同学慢!老师这样评价,你们有话要说吗?不公平!尤其是乙同学!甲同学算式中先算88加12,正好凑成100。乙同学呢?(凑不成100)能凑整的快是吗?好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25)(75+25)+48等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。原来巧用运算律还能使一些计算更简便呢!

9、做练习题巩固知识点

58+36+22+64= 357+288+143= 248+192+352= 129+235+171+165=

五、课堂总结

通过本节课的学习,你有什么新的收获?

六、作业与思考题

交换律教学设计7

教学目标

使学生理解和掌握乘法交换律和结合律,并能用字母表示,培养学生分析、推理的能力。

教学重点

懂得乘法交换律和结合律的算理,会用字母表示

教学难点

培养学生分析、推理的能力。

教学准备

教学程序

一、导入新课

⒈前面我们已经学习了加法的交换律和加法的结合律,什么是加法交换律,什么是加法结合律?如何用字母来表示。

2、今天我拉来研究乘法的一些规律性知识,这就是乘法的交换律和结合律。

二、教学新课

⒈教学乘法交换律。

(1)出示例题图

a)请同学们观察图,说说从图中你知道了些什么?

提问:如何求问题?

b)小组讨论:这两组解法有什么相同和不同的地方。

c)出示3*5=()*(),请同学们把等式填写完整。

(2)启发学生根据这个等式照样子再说出几组这样的`等式。

a)指名说说,相应板书。

b)请同学们依次计算出结果,验证看能否用等号连接。

c)讨论:每组中两个算式有什么样的关系?每算式有什么相同及不同点。

(3)学生回答,教师归纳出:两个数相乘,交换因数的位置,它们的积不变。

说明:这就是乘法交换律

(4)指出:乘法交换律也可以用字母表示,如果用ab表示两个因数,怎样表示乘法交换律?

(5)我们曾经用交换因数位置再乘一遍的方法来验算,这实际上是应用了乘法的交换律

练习:计算,并用乘法交换律来验算。

12×17

⒉教学乘法结合律。

(1)出示例题,请同学们读一读。

(2)同学们独立完成,指名板演,并分别说说每种解题的思路。

讨论:这两种解题方法有什么相同和不同的地方。将两个算式写一个算式。

(3)请同学们根据这个乘法算式再写出几个算式。

a)指名说说,并做出相应板书。

b)请同学们说说是根据什么特征来写出这些等式的。

c)同学们计算,验证这些算式能否用等号连接。

d)引导同学们仔细归纳,你发现了什么?

e)指出:这就是乘法结合律

(4)如果用字母来abc来表示这个三个因数,你能用字母表示乘法结合律吗?

⒊完成试一试

三、完成想想做做

学生独立完成,集体评讲。

四、布置作业。

交换律教学设计8

教学内容:

苏教版小学数学四年级下册第56—57页例2,及“试一试”、“练一练”。

教学目标:

1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。

2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。

3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。

教学重点:

理解并掌握如何运用加法运算律进行简便计算。教学难点:能灵活运用加法运算律进行简便计算和解决问题。教学准备:电子白板

教学过程

一、复习准备

1、师:上节课我们学习了加法的两个运算律,谁能告诉大家用字母怎样来表示?各是什么意思?

生1:a+b=b+a(两个数相加,交换加数的位置,和不变,这是加法交换律。)

生2:(a+b)+c=a+(b+c)(三个数相加,可以先把前面两个数相加,;也可以先把后面两个数相加,它们的和不变。)

2、进行一个抢答小比赛:

师:看得出大家对这两个运算律已经掌握的不错了。接下来咱们来一个抢答比赛。比比谁最快说出气球上三个数的和。算好了直接站起来报得数。

(64、19、36)

(38、18、32)

(75、27、63)

出示第一组气球:64、19、36

学生口答后提问:你怎么算的这么快的?你怎么想到先将64和

36相加呢?

明确:把能凑成整百的数先加起来,再与另一个数相加,这样比较简便(板书“简便”)。

出示第二组气球:75、27、73

师:怎么算的?这样算真简便。下一组。

出示第三组气球:38、18、32

师:这题没有两个数相加得100的,咱们怎么办的?

3、小结

谈话:看来,要想算的快,是有窍门的。只要找到了方法,把能凑成整十或整百的数先加起来,再与另一个数相加,这样计算就更简便。我们今天就要一起研究,如何简便计算。(补全课题:简便计算)

二、用加法运算律进行简便计算

1、教学例题。

出示书P57的例题图。

师:会跳绳吗?从图中你了解到哪些数学信息?

能提出用加法计算的问题吗?会列式计算吗?

先让学生独立列式计算。教师巡视,指名板演。

交流反馈:这两位同学的答案对吗?他们分别是怎么算的

框出29+46+54=29+(46+54)

提问:这两个式子为什么相等?这两种方法,哪种方法更简便?他是怎样让计算变得简便的?

谈话:运用加法结合律,将相加能凑成整百的数先加起来,再与另一个数相加,计算更简便。

2、教学“试一试”

谈话:下面两题,你能试着用简便方法计算吗?

出示“试一试”两题:56+69+2178+(47+22),学生独立完成。同桌之间说一说,你是怎么算的,依据是什么?

班级交流:选取一组同桌上台展示计算过程,并讲解算法及依据,其他同学补充。

3、小结:观察黑板上的这3题,我们是如何进行简便计算的?明确:运用加法交换律和加法结合律,我们可以把能凑成整十、整百的数先加起来,再与另一个数相加,让计算变得简便。这就是我们今天学习的,应用加法运算律进行简便计算。(补全课题)

三、及时训练,巩固提高

1、解决实际问题(练习九第7题)

谈话:掌握了简便计算的方法,我们还要用它们来解决实际问题。(课件出示)学生独立完成练习九第7题。

校对答案。

提问:怎样算比较快?

谈话:简便计算可以帮助我们更快地解决问题。因此,解决问题时,如果能简便,尽量简便。

2、两个数相加

谈话:刚才我们做的都是三个数相加的算式,同学们做得不错。接下来还有一些挑战题敢不敢试试?

出示:175+201

师:这一题你能简便运算吗?两个数,如何凑呢?

换个思路,可不可以先“拆”?

师:拆哪个数?(生:拆那个最接近整百的数。)

师根据学生回答板书。

师:先拆再凑的办法真好,谁想出来的,“小数学家”。这两题能用先拆再凑的方法做吗?

出示:354+102205+417

师:同桌先互相说一说,你打算拆哪个数。

学生完成在练习本上。指名板演。交流反馈。

出示246+198。

提问:这道题目,你能想办法简便计算吗?小组之中说一说,再独立计算。

指名板演,共同订正。

明确:198很接近200,我们可以将它先看成200去计算。但是这样多加了2,因此还要减去2。

出示刚才做的几道题目

提问:刚才我们算的这几题,都是怎样让计算变得简便的?分别

改变了哪个数?(学生口答,教师课件将改变的数圈出)

提问:改变的.都是什么样的数?

明确:都将一个加数看成和它接近的整百数,然后多加了就减去,少加了就补上。

师:这几道算式,分别应该改变哪个数?

口答:204+328436+97299+153

3、拓展题

提问:现在,你会简便计算了吗?要想运算更简便,关键是什么?那么,我们来几个难点的挑战,不要被打倒哦!

①99+199+2,小组中说一说,再在班级交流。

②36+28+44+72,怎么算更简便?同桌之间说一说,再列式计算。③1+2+3+4+……+98+99+100

好样的,还想继续挑战吗?一百个数呢?(同学们自己独立完成)交流:指名说方法。

师:当之无愧的小数学家呀,想知道世界上最早用运用简便方法计算这题的人吗?

播放视频:数学王子高斯的故事。

师:看了高斯的故事,有什么想说的吗?

师:是的,只要是深刻而持久的思考就会有发现。

四、总结

师:最后回想一下,这节课你有哪些收获?

交换律教学设计9

教学内容

教材P28页例1,P30页练习相关习题。

教学目标

1、知识与技能:

结合具体的情境,引导学生认识和理解加法交换律的含义。

2、过程与方法:能用字母式子表示加法交换律,初步学会应用加法交换律进行一些简便运算。

3、情感态度与价值观:

①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。

②培养学生观察,比较,抽象,概括的初步思维能力。

教学重点

认识和理解加法交换律的`含义。

教学难点

引导学生抽象,概括加法交换律。

教学用具

多媒体课件。

教学过程

一、自主学习

(一)出示自学提纲

自学提纲(教材P28页例1,并完成自学提纲问题,将不会的问题做标注)

1、根据例1情境图中信息列出算式。

2、用你喜欢的方法尝试计算

3、同桌交流自己的算法

4、教师板书出学生的算式及答案

40+56=96(千米) 56+40=96(千米)

5、对比上面的两道算式,你发现了什么?用自己的话说一说。

(二)学生自学(学生对照自学提纲,自学教材P28页例1,并完成自学提纲问题,将不会的问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

(三)自学检测

1、填空

387+425=( )+ 387 525+( )=137+ 525

300+600=( )+( ) ( )+65=( )+35

甲数+乙数=( )+( ) 偶数+( )=奇数+( )

2、连线

56+68 50+B

B+50 68+56

二、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

(引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

(二)师生互探

1、解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题,并让学生解决。

(2)教师引导学生解决学生还遗留的问题。

(3)如何用字母表示加法交换律和结合律?

(4)用字母表示这些运算定律有什么优点?

2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

三、达标训练

1、填空题。

(1)360+482=( )+ 360 128+275=125+( )

(2)( )+ 78 =78 +149 133+( )=125+133

2、连线。

38+175 47+B

B+47 175+38

3、简便计算下面各题。

89+91+11 268+147+32

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

四、堂清检测

(一)出示检测题(1—2题必做,3题选做,4题思考题)

1、根据加法交换律填空。

(1)450+320=( )+ 450 65+95=95+( )

(2)( )+ 100 =100+150 250+( )=125+( )

2、下面的哪些算式符合加法交换律。

(1)84 + C = B + 84

(2)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

3、简便计算。

81+78+19 679+132+121

(二)堂清反馈:

作业布置

教材P30页习题。

板书设计

加法交换律

40+56=96(千米) 56+40 =96(千米)

a+b = b+a

交换律教学设计10

教学内容:

青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

教学目标:

1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2、在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3、让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4、初步形成独立思考、合作交流的意识和习惯。

教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

教学准备:

课件、投影仪、卡片

教学过程:

一、拟定导学提纲,自主预习

(一)创设情境

1、谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

学生观察汇报,学生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

教师适时板书相应的信息条件。

2、你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

问题(1)黄河流域的面积是多少万平方千米?

问题(2)黄河全长多少千米?

(二)出示学习目标

同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的`运算定律进行简算。

2、在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

(三)出示自学指导

为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

(自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

(5分钟后,比一比谁汇报得最清楚。)

(四)学生自学

师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

二、汇报交流,评价质疑

(一)调查

师:看完的同学请举手?

(二)全班汇报

1、问题一:黄河流域的面积是多少万平方千米?

学生在列式解答时,可能会出现两种情况:

(1)39+34+2和34+2+39

(2)(39+34)+2和39+(34+2)。

2、问题二:黄河全长多少千米?

学生可能出的情况:

(1)、3470+1210+790和1210+790+3470

(2)(3470+1210)+790和3470+(1210+790)。

今天我们要学的知识就在这两组算式中。

(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

3、观察、比较、发现规律

(1)观察这些算式,你们发现了什么?

生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

例如:

(39+34)+2=39+(34+2)

(3470+1210)+790=3470+(1210+790)。

(2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

学生汇报:

(35+63)+15=35+(63+15)

(325+82)+18=325+(82+18)…

(3)把你的发现告诉大家?(将学生的举例用实物投影展示)

(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

师指出这条规律叫做加法结合律。

(4)你能用你喜欢的方法表示这加法结合律吗?

学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

(设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

4、学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

(1)游戏:找朋友。

在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

交换律教学设计11

教学内容:

人教版小学数学四年级下册第24---25页例题,及做一做。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察,比较、分析、综合、和归纳、概括等思维能力;使学生在数学活动中获得成功的体验。

教学重点:

探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

教学难点:

乘法结合律的推导过程。

教学用具:

课件

教学过程:

一、创设情境,生成问题

1、猜谜引入

猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”

生:(积极举手)纽扣。

师:你为什么会想到是纽扣?

生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。我们来复习一下。

出示:(1)根据运算定律在下面的()里填上适当的数。

48+___=a+___

61+28+72=61+(___+72)

718+(282+6)=(718+___)+___

(b+132)+768=___+(_____+768)

(2)下面各题怎样计算简便就怎样计算。

78+29+22。”79+145+21

师:说说怎么计算?运用了什么运算定律?(加法交换律和加法结合律)

师:怎么用字母如何表示加法交换律、结合律呢?

板书:a+b=b+aa+b+c=a+(b+c)

3、设置疑问,引入新课。

加法运算定律有加法交换律和加法结合律,在其它运算中,是不是也存在这样的规律呢?请同学们大胆猜想一下,乘法中会有什么定律?

二、探索交流,解决问题。

活动一:探索乘法交换律

1、猜一猜:乘法可能有哪些运算定律?

生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:……

2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

4、交流。

(1)生1:我们小组经过讨论认为乘法有交换律。比如:2×3=3×2,0×8=8×0等等。两个因数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个因数的'位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有5个小组,每个组有8人,求一共有多少人?可以列成算式:5×8=32,也可以用8×5=32。这就说明5乘8等于8乘5。因此,乘法和加法一样,也有交换律。

师:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如“300×

师:你能用自己的语言描述一下乘法交换律吗?

生:两个数相乘,交换因数的位置,积不变。

师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

师:会用字母表示吗?板书:a×b=b×a。

5、师:学习乘法交换律有什么作用?

生:乘法交换律的作用有很多,第一:它可以用来验算乘法。第二、它还可以比较两个式子的大小。第三、还可以让有些算式变得简单易算。

活动二:探索乘法结合律。

师:乘法是否还有其他运算定律呢,我们一起接下去研究看看。同学们,窗外树木新发的嫩芽正提醒着我们,现在已经是春季,细雨滋润大地,万物复苏,正是植树造林的好时机。最近我们学校也组织同学们参加植树活动,很多同学们都积极地响应学校的号召。

1、出示例题2:

同桌讨论,你们是怎样计算的?

生1:先算出一共种了多少棵。

(25×5)×2=125×2=250(人)

生2:先算每组要浇多少桶水。

25×(5×2)=25×10=250(人)

2、全班交流

(1)师:我们来观察两位同学的做法,你有什么发现?

比较等号两边的算式,有什么相同点和不同点?

生1:结果相等。

生2:第二个算式中有括号,第一个算式中没有。

(2)猜想:是不是具备这种形式的两个算式结果都相等?这会不会是乘法中的一个规律?

生1:是。

生2:可能是。

……

师:同学们猜测的对不对呢?我们需要进行—验证。怎样验证呢?(让学生先思索一会儿)

生:随便说两个算式,一个不带括号,一个带括号,算出结果,看是否相等。

师:同学们觉得呢?---可以。

师:通过一组算式就能验证吗?

生:不能,要多举几个例子。

师:说得真好。下面就来验证一下。

(3)学生举

比较这几组等式,你发现了什么规律,把你的发现与同桌交流。

师:能用自己的语言描述一下你发现的规律吗?

结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(师:这就是乘法结合律)

师:你说得很准确,有什么好方法帮助记住这乘法结合律吗?

(4)师:怎样用字母表示乘法结合律?

板书:(a×b)×c=a×(b×c)

(5)师:有什么好方法帮助记忆?

生:我发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示“先把前两个数相乘”,第三个手指靠过来表示“再和第三个数相乘”,它等于“先把后两个手指靠在一起,再把第一个手指靠过来”。

师:这个记忆方法确实很好,我们大家一起来试一试。三、巩固应用,内化提高。

师:刚才我们已经验证了在乘法中确实存在交换律和结合律,接下来老师要考考大家能否正确运用乘法运算定律解决问题。

1、学生在空格里填上适当的数使等式成立,然后同桌说说运用了什么乘法运算定律。

15×16=16×()

(60×25)×=60×(×8)

125×(8×)=(125×)×14

3×4×8×5=(3×4)×(×)

25×7×4=×( ×4)

同学们互相讲填写的依据,以检查学生是否理解了乘法交换律和结合律。订正时重点分析最后一小题,乘法结合律并非为了用而用,更要考虑使计算简便。

2、计算23×15×25×37×2

放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

通过实际操作计算,进一步利用乘法运算定律进行简便计算,从理解上升到运用。

师:运用了乘法的运算律,计算时你有什么体会?

3、思考题:用简便方法计算。

36×25125×32

例。6=6×300

学生的方法很多:36×25=25×4×9=5×6×5×6=、、、、、、

四、回顾整理,反思提升

通过这节课的学习,你有什么收获想和大家分享一下呢?

板书设计:

乘法运算律

乘法交换律乘法结合律

3×5=5×3(25×5)×2=25×(5×2)

7×8=8×7(12×5)×4=12×(5×4)

9×8=8×9(35×8)×7=35×(8×7)

a×b=a×b(a×b)×c=a×(b×c)

交换律教学设计12

教学目标:

1、掌握乘法交换律和乘法结合律。

2、运用乘法交换律验算乘法。

3、培养学生的分析、概括能力。

重点难点:

掌握乘法交换律和结合律。

教学准备:

多媒体课件。

教学过程:

一、谈话引入,激发兴趣。

1、出示第33页主题图。

2、师:植树节快到了,四年级同学去义务植树。

3、师:看图,植树要做哪些事情?

(挖坑、种树、抬水、浇树…)

4、师:这里也有许多数学问题,想学吗?

二、自主学习,合作探究。

1、教学例1。(多媒体出示教材第33页主题图)

师:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。负责挖坑、种树的一共有多少人?

生算,小组里交流。生汇报。

生甲:4×25=100(人)

生乙:25×4=100(人)

师:他们算得对吗?从这里,你发现了什么?小组里议一议,交流。(交换两个因数的位置,积不变。)

你能举出几个这样的例子吗?

例:7×5=5×7 20×10=10×20

师:交换两个因数的位置,积不变。这叫什么?你给它取个名字?

生甲:乘法交换律。

师:你能用符号或字母表示它吗?

生乙:a×b=b×a

师:乘法交换律,以前我们已用过它,在什么地方呢?

生丙:交换因数的位置相乘,验算乘法。

师:对。试一试,好吗?

24×16 15×17

指名两生板演,集体订正。

2、教学例2。(多媒体出示主题图)

①师:看图,每组要种5棵树,每棵树要浇2桶水,一共要浇多少捅水?

生小组里交流,并汇报。

生甲:我先计算一共种树多少棵。

(25×5)×2

=125×2

=250(桶)

生乙:我先计算每组种树要浇水多少桶。

25×(5×2)

=25×10

=250(桶)

②师:那么(25×5)×2○25×(5×2)中间填上什么符号?

生:等号。

请你举出几个这样的例子。

生甲:(25×2) ×2=25×(2×2)

生乙:(lO×5) ×5=10×(5×5)

生丙:1O×(2×5)=(lO×2) ×5

③师:从上面的'算式中,你发现了什么?

生甲:三个数相乘,先乘前面两个数,或者先乘后两个数,积不变。

师:仿照加法的运算定律给它取个什么名字?

生乙:我叫它乘法结合律。

师:同意这种叫法吗?

师:你会用字母表示它吗?

生丙:(aXb) Xc=aX (bX。)

3、比一比,议一议。

师:比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?

生甲:我发现加法交换律和乘法交换律,都是交换数的位置,结果不变。

生乙:我发现加法结合律和乘法结合律,改变了题里的运算顺序,结果不变。

师:你们真聪明,说得好极了。

三、巩固运用,深化提高。

1、教材第35页“做一做,,第1题。

先计算,再运用乘法交换律进行验算。

2、教材第35页“做一做,,第2题。

生独立做,并汇报。

生甲:2×24×5

=48×5

=240(元)

生乙:2×(24×5)

=2×120

=240(元)

师:他们做得对吗?你是怎样判断的?

四、总结提升。

这节课,你学会了什么?还有什么问题和大家共同讨论?

交换律教学设计13

教学内容 :课本34页例1、例2。

教学目标

1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

2、过程与方法:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:

理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

教学难点:

1、能灵活运用乘法交换律和乘法结合律解决简单的实际问题,提高计算能力。

2、能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。

教学过程

一、自主学习

(一)出示自学提纲

1、乘法交换律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

2、乘法结合律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

3、比较加法交换律与乘法交换律,加法结合律与乘法结合律,你发现了什么?

(学生在自学过程中,教师巡回指导,并告诉学生在看不懂的'地方要做上标记)

(二)学生自学

(三)自学检测

计算下面各题,怎样简便就怎样计算。

23×4×5 8×(125+11) 2×289×5

二、合作探究

1、小组互探(把在自学过程中遇到的不会问题在小组内交流探究)

2、师生互探(师生共同探究在自学过程中遇到的不会问题及经小组讨论后还未能解决的问题)

(1)在运用乘法运算定律进行计算时应注意什么?

(2)你会用简便方法计算下列各题吗?

45×12 125×16 250×64

三、达标训练

1、下列各式运用了乘法的交换律,对吗?为什么?

100×9=9×100 2×18=2×18 a+b=b+a

2、先口算,再把得数相同的两个算式用等号连接起来。

(6+4)×5 6×4+4×5

(8+12)×4 8×4+12×4

8×(7+3) 8×7+8×3

3、在下列方框中填上适当的数。

30×6×7=30×(□×□)

125×8×40=(□×□)×□

4、用简便方法计算。

69×125×8 25×43×4 13×50×4 25×166×4

课堂小结:通过本节课的学习,你都学会了哪些内容?你有哪些收获?你还有疑问吗?

四、堂清检测

1、判断。

(1)4×(25×3)=(4×25) ×3 ( )

(2)7×(18×40)=7×(40×18) ( )

(3)(7×8)×125×15=7×(8×125)×15 ( )

2、计算。

(1)13×50×4

(2)25×166×4

(3)8×5×125×40

(4)125×32×5

3、解决问题。

每袋有5个乒乓球,每排有4袋,放了2排,一共有多少个乒乓球?

板书设计

乘法交换律和乘法结合律

(1)负责挖坑、种树的一共有多少人? (2)一共要浇多少桶水?

25×4=100(人) 4×25=100(人) (25×5)×2 25×(5×2)

25×4=4×25 =125×2 =10×25

┆(学生举例) =250(桶) =250(桶)

(25×5)×2=25×(5×2)

┆(学生举例)

交换两个因数的位置,积不变。 先乘前两个数,或者先乘后两个数,

这叫做乘法交换律。 积不变。这叫做乘法结合律。

a×b=b×a (a×b)×c=a×(b×c)

交换律教学设计14

第五课时:

教学内容:乘法交换律和乘法结合律练习课

教学目标:

1.能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的`实际问题。

教学过程:

一、基本练习

(1)口算:

50×2=100 50×20=1000

25×4=10025×8=200 25×12=300 25×40=1000

125×8=1000 125×16=200

125×24=3000125×80=10000

通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

板书:5×225×4125×8

(2)在□里填上合适的数。

30×6×7=30×(□×□)

125×8×40=(□×□)×□

(3)计算:

43×25×4 25×43×4

比较两道题,在运用乘法运算定律时有什么不同?

在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。

小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

引导学生在对比中加以区分。

(4)师生比赛,看谁直接说出结果速度快。

25×42×4 68×125×8

4×39×25

(5)对比练习:

4×25+16×25

4×25×16×25

(25+15) ×4

(25×15)×4

46×25

(40+6)×25

49×49+49×51

49×99+49

(68+32)×5

68+32×5

学生小组分工后独立完成,再进行小组内交流。

汇报。

二、小结

学生谈收获。

交换律教学设计15

【教材分析】

本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。

【学情分析】

学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。

知识技能上:在学习本课前,学生已经知道:25×4=100 、125×8=1000以及整十整百整千数乘法计算比较简便。

【学习目标】

知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。

过程与方法:经历数学探索过程,进一步体会探索的过程和方法。

情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。

【学习重难点】

探索、发现、理解、应用乘法结合律。

【教学策略】

创设情境,组织探索,引导自主学习。

【教学过程】

一、创设情境,发现问题

师:同学们喜欢搭积木吗?

生:喜欢

师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?

生:想

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)

师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?

生:……

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证

师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?

生说师板书:

a×b﹦b×a叫做乘法交换律

师:a。b指的是什么?

(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)

三、探索乘法结合律

1、课件2出示情景图(书54页)

师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?

学生独立观察、思考后集体交流。(说说估计的方法)

师:谁估计的准确呢?请同学们在本子上算一算。

(学生独立思考,计算,教师巡视)

师:谁愿意把你的'想法介绍给大家?

生举手汇报,师追问:怎样想的?

师引导从上面、正面观察

上面:(3×5)×4

师:这个算式可以写成 (5×3)×4 吗?

生:可以,都是求同一个物体,

生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。

师:出示4×(5×3) 可以这样写吗?

生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。

正面:(4×5)×3

师:你还可以怎样写?根据是什么?

生:(5×4)×3 3×(5×4)

(设计意图:通过对算式的变换,巩固乘法交换律)

师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。

生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。

师:可以写成(3×5)×4 = 3×(5×4)吗?

生思考回答。

(设计意图:通过对算式异同的比较,让学生自己发现规律,)

2、提出假设,举例验证

师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器

(学生在小组内举例交流讨论,教师巡视指导。)

师:谁愿意介绍一下你们举例的情况。

生:……

3、概括规律

师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?

生思考概括

师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?

生说师板书:

(a×b)×c﹦a×(b×c)叫做乘法结合律

三、运用模型,完成练习

1、学生独立完成“练一练”1题。最后运用课件集体订正。

2、运用乘法结合律很快算出38×25×4 42×125×8

生独立完成,小组交流后汇报

3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。

(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的

知识通过练习加以巩固运用。)

五、小结:

1、 这节课你学到了什么?

2、 我们是怎样认识这个好朋友的?

板书:

探索与发现

乘法交换律 乘法结合律

a×b﹦b×a (a×b)×c﹦a×(b×c)

5×4﹦4×5 (3×5)×4 =3×(5×4)

生举例略 生举例略