众数教学反思
众数教学反思
作为一位优秀的老师,我们要有一流的教学能力,借助教学反思我们可以拓展自己的教学方式,那么什么样的教学反思才是好的呢?下面是小编为大家收集的众数教学反思,仅供参考,大家一起来看看吧。
众数教学反思 篇1
这次我讲的这节课是统计部分的指示,讲完课后自己的感触很多。
从整堂课来看这就是我平时上课的真实写照,课堂亲切不失严肃,结构清晰,环节紧凑,略带激励措施。
这次讲课时我再次又重新认识了自己。看似简单的'统计知识研究起来真不是想象得那么简单。另外我再次领悟到课改的精神,数学上很多知识不能校对的那样严格。而且这次犯了数学上的大忌:对学生没能大胆“放手”。致使个别环节突破的不好,不巧妙。例如在区别众数和平均数的不同含义时,刚开始让学生交流,也许是由于有听课的缘故发现学生不能说出多少,而且发言学生很少,接着我就给学生点了出来而没能让学生充分交流充分体会。还有在分段整理后讨论“哪段人数最多,和众数所在范围一致吗?“这一环节也犯了同样的错误。
总之,这节课从整体上看效果不是很好,自己在业务上还需进一步提高,多向他人请教,尤其多向结拜师傅学习,真正提高自己的教学水平,真正提高课堂效率,走出现在的误区,在原有的基础上更进一步。使自己真正成为一位名副其实的教师骨干。
众数教学反思 篇2
一、重视课前与学生交流互动。
由于我是借班上课,与学生是不熟悉的,为了尽快地让学生接纳我,我加强了与学生的课前交流。“老师初来太平湖,很高兴,放歌一曲,让学生给老师的演唱水平评判”,学生很感兴趣。通过独具匠心的设计,较好地与学生沟通,拉近了师生距离。评判的时候,让学生分三组,从不同的角度进行量化,将平均数、中位数、众数等数学知识有机地渗透在引入环节,充分体现“数学味”。
二、重视数学问题的情境创设。
结合北京奥运会的大背景与“阳光体育”的开展等情况,从中抽出数学问题,充分体现“生活味”。课中,我引用了“我是教练”的方式,精心设计问题,让学生勇于参与问题的探索。
三、重视学生的数学情感体验。
“让学生参与特定的教学活动,在具体情境中初步认识对象的特征,获得一些经验”(数 学课程标准第4页)。我的教学设计中充分体现了之一理念,由五个板块组成,(在课前交流中体验,渗透统计思想、在生活情境中体验,培养统计意识、在数据整理中体验,学会统计描述、在数据分析中体验,找寻统计决策、在归纳总结中体验,形成统计能力)将学生的数学体验贯穿整个教学过程,从而培养学生的'统计能力。
四、重视数学课件制作与使用。
充分发挥课件优势,集音像、动画于一体,让数学课堂丰富起来。我将龙门中心校的校舍、太平湖畔、牯牛降等风景的图片放在课件中,在图片上出题,学生眼前一亮,很是新奇。
五、重视幽默风趣的教学风格。
走进我的数学课堂你总能收获到学生的笑声,主要源于我一贯的幽默风趣的教学风格。当学生在探索“给太平湖景区的经销商提供好的信息时”,学生建议给断码的鞋多进货时,我告诉学生:“你不是在帮助经销商,你是在害他,你会让他破产的!”学生哄笑。
最不能让我原谅自己的是,我犯了一个低级的错误,那就是我忽视了学生的实际情况,我压根没有考虑到黄山区的课改没有进行到五年级,而我使用的版本是新课改的,所以我差点栽了。好在,我所选择的内容与以前所学的知识联系并不太紧密,只与“平均数、中位数”有所联系,课前,我对学生进行了短暂的“恶补”,虽然情况不是特好,但至少让我的课堂还显得流畅。所以,在以后的教学中,一定要充分考虑到学生的实际情况,脱离了学生,你的教学肯定不会走向成功。
众数教学反思 篇3
本节课是北师大版五年级数学下册的内容。主要是让学生在实际情境中认识并会求一组数据的中位数和众数,并解释其实际意义。这是一堂概念课,也是学生学会分析数据,作出决策的基础课。
一、创设问题情境,引发认知冲突。
在使用教材时,我对教材使用了如下处理:创设了一个用平均年龄来反映一群人的年龄水平的生活情境,让学生在现实情境中发现单靠“平均数”来描述数据特征有时是不合适的,从而理解中位数和众数产生的必要性,让知识的产生联系生活实际的需要。
二、引导分析讨论,加深概念理解。
接着提供了某人去找工作,招聘广告承诺月平均工资1000元,觉得条件不错,可当他看到该超市月工资表时,却有疑问了。就势向学生提出“用平均数1000元来描述该超市工作人员的'月工资水平合适吗?那么,你觉得用哪个数来描述比较合适?” 这是一个生活中的真实问题,通过学生的思考、讨论,在此基础上理解众数、中位数的意义,怎么求中位数和众数,紧接着通过四组练习题,让学生了解到特殊情况下中位数和众数的求法。
三、在运用中完善知识结构。
从发展学生认识问题、探索问题、研究问题的能力角度考虑,我设计了大量的与学生生活实际密切相关的思考题,几乎所有的问题都在学生身边,使学生得以联系实际,设身处地的去考虑问题,在问题解决的过程中加深对概念的进一步理解,体会到平均数、中位数和众数三者既各有所长,也都有不足,一定要根据需要灵活选择。从而使学生领会到在实际生活中一定要多角度全面的考虑问题,分析问题。
上完此节课后,我觉得在三种统计量的应用方面还有所欠缺,如果课前能让学生自己去搜集一些生活中的数据,在课堂上提出来自己觉得哪种统计量更适合自己搜集到的数据,为什么?让其他同学来评评他的看法,这样能使课堂气氛更加活跃起来,增加师生以及生生之间的互动性。
众数教学反思 篇4
关于众数的教学,是小学数学中一个新增的教学内容,也是大家公认的难教的一个内容。本节课是学生第一次认识众数,这部分内容紧密结合学生实际,围绕“李阿姨应该选择哪家公司”展开讨论,使学生在提出问题、观察和处理数据、做出决策的过程中,认识另一种统计量——众数。在理解众数的意义和作用的同时,初步体会平均数、中位数与众数的区别,并能根统计量进行简单的预测或做出决策。
本教学设计突出了以下方面:
一是把众数放在有意义的现实情境中学习。众数是在现实需要的基础上产生和学习的统计量。因此,众数的学习不能也不应该脱离现实情境。在本节课中,李阿姨应聘、我给鞋店当参谋、体育运动训练等现实情境都为学生认识、理解和运用众数取了极好的促进作用。有了这些典型的现实情境作支撑,学生就能自然感受到学习众数有趣而且有用。
二是把众数放在新旧知识的对比中学习。在认识众数之前,学生已经认识了平均数和中位数。在新课的引入中,教师巧妙地利用平均数制造冲突;在新课的学习中,教师注重了对平均数、中位数、众数的.数学意义和统计意义的比较;在新课的练习中,教师强化了平均数、中位数和众数在现实生活中的灵活运用。
三是把众数放在学生自主活动中学习。在这一教学设计中,学生的学习活动始终是一个生动活泼的、主动的和富有个性的过程。学生有足够的时间和空间经历观察、猜测、计算、推理、验证等活动过程;学生能以认知发展水平和已有的经验为基础,主动探索、合作交流,理解和掌握基本的数学知识与技能、数学思想和方法,开展必要的数学思维训练,获得基本的数学活动经验。
众数教学反思 篇5
这节,由浅入深设置问题串,使学生思维分层递进,目的是突出本节重点,分解了难点;通过追问层层引导,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善知识结构。
练习时,在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别。这样更加具有很强的生活色彩,让学生体现了众数,中位数在日常生活中的应用。使学生深刻体会数学源于生活,同时也服务于生活。
通过这节课的.学习,我感到学生的参与性很强,乐于与同伴交流、探索知识。需要强调的是:学生有自己的看法和意见,教师不可一味的否定学生。教师要关注学生思考问题的过程,千万不要代替学生思考,更不可强加给学生固定的思维模式。
众数教学反思 篇6
众数是小学数学统计中新增的教学内容,而中位数、平均数、众数的选择与运用对学生来说又是比较难掌握的。本节课是学生第一次认识众数,这部分内容紧密结合学生实际,围绕“怎样选取人员更合适”展开讨论,让学生通过讨论、尝试的过程,认识另一种统计量——众数。在理解众数的意义和作用的同时,初步体会平均数、中位数与众数的区别,并能根统计量进行简单的预测或做出决策。
为了让学生能够更好的认识到平均是、中位数与众数的区别,在教学中我把众数放在新旧知识的对比中学习。在认识众数之前,学生已经认识了平均数和中位数。在新课的学习中,我注重了对平均数、中位数、众数的数学意义和统计意义的比较;在新课的练习中,强化了平均数、中位数和众数在现实生活中的灵活运用。
从课堂效果上来看,孩子能够初步区分中位数、平均数与众数,但是美中不足的`是在找中位数时,由于数字较多,孩子经常出现找错中位数的情况,可以看出,孩子对于中位数的掌握还不是很牢固,在今后的教学中,更要注意对旧知识的复习。
众数教学反思 篇7
六(下)数学中有关统计量的教学时老师们一直头疼,认为比较难教的内容。我觉得对这些统计量的有关概念应正确理解,注重知识的应用,避免单纯的数据计算和概念判断。如平均数、中位数和众数的联系和区别,这三个统计量到底在什么条件下适用,一直困扰着很多老师。自己也查找了一些资料,如下:
平均数、中位数和众数都是反映一组数据集中趋势的量数,代表一般水平。
平均数能反映全体数据的信息,任何一个数据的改变都会引起平均数的改变,比较敏感,因而应用比较普遍;缺点是易受极端值的影响。日常生活和研究领域的统计数据,多数都选择平均数作为代表值。如我们国家和地方统计部门经常公布的人均产值、人均收入、物价指数等等,都是应用平均数作为代表值。中位数处于中间水平,不受极端值的影响,运算简单,在一组数据中起分水岭的作用;缺点是不能反映全体数据的情况,可靠性较差。众数不受极端数据的影响,运算简单,当要找出适应多数需要的数值时,常用众数;缺点是不能反映全体数据的情况,可靠性较差。众数可能不唯一,甚至有时没有。
这三个统计量有着各自的特点和适用的条件,可以根据研究和解决问题的需要来选择;与中位数和众数比较而言,平均数可以反映更多的.样本数据全体的信息。然而它们三者并不是一种完全排斥的关系,特殊情况下这三个统计量或者其中的两个统计量都有可能成为一组数据一般水平的代表。如学生的考试成绩往往服从正态分布或者近似正态分布,那么,这三个统计量很可能相等或者非常接近,这时用三个统计量中的任何一个作为该组数据的一般水平的代表都是可以的。有时把平均数和中位数结合使用,会了解更多的信息。如某次数学考试全班49人平均分数为92分,小林考93分,排名第25,小明的成绩比小林高2分。可以发现中位数是93分,小明的成绩处于中上等水平,平均数低于中位数,说明可能有极端的低分数。
众数教学反思 篇8
回顾本节课,主要有以下几方面的特点:
通过猜一猜的游戏引起学生思考,使学生在认知结构上产生冲突,使之成为学生重新建构认知的良好契机,让学生对本课有一定的求知欲望。再者众数的学习虽然很自然很容易,但是我在练习中充分地利用这组数据,引导学生发现一组数据中的众数可能有
1、2个或可能没有,使学生对众数的认识更全面,最后通过学生主动探索、思考、发现过程中,体会到中位数的产生过程及实际背景。这样,学生不但完成了对新知的整合与建构,而且把探索求知、发现新知的权利真正交给了学生。
此外,在本节课中,无论从概念的得出、问题的解决、还是决策的制定,合作与交流贯穿整个教学过程。通过组内讨论、同桌交流体现了各层次学生对知识的不同理解;在交流过程中,每个学生的思维与智慧都与同学分享,学生对概念的`理解更全面,更深入。
遗憾和不足是:
例如中位数在学生的生活中运用不是很多,如何通过丰富的事例让学生感受到中位数和众数在生活中的意义和作用,还值得我们进一步去研究。
总之,整节课学生经历着在观察中思考,在思考中发现,在发现中争论,在争论中提升的过程。我们把课堂真正还给了学生,师生在共同的研讨、交流中感受数学学习的乐趣。
众数教学反思 篇9
平均数和众数都是一种统计的数计,是数据的代表,是统计量。教学的重点使学生能够根据具体的生活实际选择适当的.统计量来表示数据的不同特征,帮助学生会用数据说话。因此在出示例2后,通过:
让学生看一看:在做试验的9人中,发芽几粒的最多?有几人?
让学生算一算:这一组数据的平均数怎样求?是多少?
让学生想一想:你认为在我们研究这批种子的发芽状况时用平均数14来表示合适吗?为什么?
让学生议一议:你认为用哪个数据来表示这批种子的发芽状况比较合适呢?为什么?
……
通过一系列教学活动,学生在合作交流中逐步感悟众数的意义、求法以及作用。
众数教学反思 篇10
一、在生活情境中提出 概念。
数学教学,要求紧密联系学生熟悉的生活实际。所以根据学生的年龄特征和认知特点,我创设了“为迎接六一儿童节的到来,我们年级准备组队参加集体舞的表演,要选报舞蹈队员”这样一个学生喜欢、熟悉的生活情境,以如何从20名队员中选拨10名队员这个问题为切入点,充分利用课本中的主题图,将学生置身于现实的问题情境之中。抓住童心,激发兴趣,然后通过学生对选拔方法的探究,顺理成章地引出了众数的概念。
二、在学以致用中区别概念。
“学习数学是为了能运用数学来解决实际问题”,本着这样一种理念,我在练习的第二个环节中设计了三个选择题,这三个选择题分别是:
1、当我们需要购买物品的时候,往往会关注同一种物品的不同品牌的销售量最多是什么品牌,也就是利用众数来帮助我们作出判断:哪种品牌的物品质量比较可靠;这个选择题的设计意图主要是要让学生明确:选择适当的统计量,要根据我们所关心的问题来进行确定。
2、当一组数据中有偏大数和偏小数的时候,用中位数来代表这组数据的一般水平比较合适,主要让学生明确:选择适当的统计量,要根据这组数据的大小特征来确定。
3、要确定一名学生的成绩在班上处于什么位置,要用中位数来判断,要比较两个班的成绩,要关注的他们的平均水平。由此让学生理解:众数、平均数、中位数他们既有联系,即都可以用来描述一组数据的集中趋势,又有区别,即众数反映的.一组数据中出现次数最多的数据,平均数反映的是一组数据的平均水平,它与这一组数据的每一个数据都有关系,而中位数则反映的是一组数据的中等水平,它与这一组数据的大小排序有关,所以它们描述的角度各不相同。
当然,在本节课的教学中,还存在很多不足,如:对待学生的生成问题,处理方法有的不是很妥当;对学生的评价也不够到位,评价性的语言也不够艺术。
众数教学反思 篇11
《认识众数》这节课,我紧密结合学生实际,围绕“用平均数能否代表员工工资一般水平”展开讨论,引起学生对“平均工资”产生认知上的冲突,发现用“平均数”来代表工资一般水平不合适,从而激发了学生的学习兴趣,引导学生轻松的学习。学生在提出问题、观察和处理数据、做出决策的过程中,认识另一种统计量——众数。
课中我把众数放在与学生有关的年龄、视力、身高等情境中让学生自主学习。在这一教学设计中,学生的学习活动始终是一个生动活泼的、主动的和富有个性的过程。学生有足够的时间和空间经历观察、猜测、计算、推理、验证等活动过程;学生能以认知发展水平和已有的经验为基础,主动探索、合作交流。在自然而然中解决了众数的找法,众数与平均数区别等等问题。
课后我能及时总结并能引导学生利用所学的众数知识对实际生活中的一些问题作出决策和判断。
但这节课也有严重的不足,一是没能让学生清楚的明白既然众数和平均数一样都是一种统计量,那什么时候用众数作代表,什么时候用平均数作代表。二是在不断改题的'过程中出现了科学性的错误,那就是既然第一组学生定下来了,他们的年龄是不能随便改的。要改也只能改由年龄抽象出来的那组数据。也可以调换这组学生。
众数教学反思 篇12
新数学课程标准强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式。所以本节课主要以“先学后教”、“小组合作”为主线开展课堂教学。
“中位数和众数”安排在“算数平均和加权平均数”之后的一节概念与方法教学课,为“平均数、中位数与众数的选用”奠定基础。本节课从实际生活中的气温引出已学过的平均数,再过度到中位数与众数?由解决问题的过程得出概念、方法,再由一般情况到特殊情况,如:奇数个数据到偶数个数据的中位数的寻找方法,一组数据中有一个众数到有多个众数,没有众数的特殊请况;最后由方法到应用。在练习题目的设置上,有代表性、有层次性。由概念判断到较易的找中位数和众数,再到有难度的.变式练习。其中,在课堂小结时,由学生表述当堂所学,教师给予肯定,让学生体验掌握知识的成就感。
但是,在备课时,对备学生这块准备不足,课堂的应变能力有待提高,各环节的时间掌控也不甚理想,以致最后有两道题未能在课堂上完成,而留着课下作业。课堂教学的目标应该是,当堂内容,当堂消化,尽量少留或不留课下作业,为学生减负。
不尽之处,望各位领导、同仁,不吝赐教。
众数教学反思 篇13
我从学生已有的知识和经验出发,设计认知冲突。“为什么老师跳得比平均数小,却还能排在第二呢?”让学生通过观察,并通过老师设计的条形统计图,形象地发现极端数据与其他数据之间的差距,强烈感受到:在这组数据中,如果出现了极端数据,这时用平均数作为这组数据的代表已经不太合适,需要选用新的数据作为代表,从而激发学生寻找新的数据代表的心理需求。
在第二个环节中,我让学生寻找新的数据代表,我让学生独立思考,自主探索,合作交流,充分经历寻找新的数据代表的'过程,从中感悟中位数的意义。而且将中位数102与老师跳的107做比较,使学生初步领悟到中位数的作用,获得认知平衡。
本课的练习设计,我分别设计了这样几道题。一平均数与中位数比较的练习,让学生进一步感知什么时候用中位数代表一组数据的水平比较合适。二平均数与中位数比较,让学生体会中位数与平均数相差不大的情况,如何选择数据代表。三实际生活中选合适的统计量的练习,进一步明确各个统计量的意义和作用,感悟到它们之间的联系与区别,逐步体会到要根据数据的特点,具体地分析数据,灵活选择数据代表;要根据不同的需要,选择合适的数据代表,做到具体数据具体分析,具体问题具体对待,不形成思维定势。
众数教学反思 篇14
今天用多媒体上了《中位数和众数》,虽然没有什么大问题和疑问,但还是有一些知识需要整理和补充。以下是我在教学过后从网络上学习的内容,虽不是我所写,但是却是我所想。中位数和众数是根据《数学课标》的要求新增加的教学内容。在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。
平均数、中位数、众数这三个统计量虽然都代表一组数据典型水平或集中趋势的量,但是它们反映数据的特征有所不同。
下面谈谈这三种统计量之间的异同点:
一、平均数、中位数、众数的相同点.
平均数、众数和中位数都叫统计量,它们在统计中,有着广泛的应用。平均数、中位数、众数都是描述数据的集中趋势的“特征数”,平均数、中位数和众数从不同侧面给我们提供了同一组数据的面貌,平均数和中位数都有单位(众数如果表示的是数时,也有单位);它们的单位和本组数据的单位相同。三者都可以作为一组数据的代表。
二、平均数、中位数、众数的不同点
(一)三者的定义及优缺点不同。
1.平均数。
①平均数的定义及特点。
小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。
在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。既可以用它来反映一组数据的一般情况(用平均数表示一组数据的情况,有直观、简明的特点),也可以用它进行不同组数据的比较,可以看出组与组之间的差别。平均数反映一组数据的平均水平,与这组数据中的每个数都有关系;用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,所有的数据都参加运算,对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响。在平均数中有一种去尾平均数,它是将一组数据的其中一个最大值和一个最小值去掉后其余数值的平均数.它保留了平均数的集中趋势代表性强的优点,又具有中位数的可排除个别数据变动较大所带来的影响的特点,因而当一组数据的个数较少、且可能个别数据变动较大时,常用去尾平均数去描述一组数据的集中趋势.例如,体操比赛时给每个运动员评分,实际上用的就是去尾平均数:若干个裁判员同时给一个运动员完成的动作评分;然后在去掉其中一个最高分和一个最低分后,将其余分数的平均数作为该运动员的得分。
②平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定,它也是学生今后学习计算离差、相关和统计推断的基础。
③平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算。一组数据的每一个数据都要参加计算才能求出,特别是当一组数量较大的数据,其计算的工作量也较大。平均数易受极端数据的影响,从而使人对平均数产生怀疑。这也就是为什么在许多竞赛场合下对评委亮分后的成绩分数,要去掉一个最高分和一个最低分,尔后再计算平均数的一种考虑。
2.中位数。
①中位数的定义及特点:一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。用中位数作为一组数据的代表,可靠性不高,但受极端数据影响的可能性小一些,有利于表达这组数据的“集中趋势”。
②中位数的优点。
简单明了,很少受一组数据的极端值的影响。
③中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的.信息。当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
3.众数。
①众数的定义及特点。
几组数据中出现次数最多的那个数据,叫做这批数据的众数。用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一个量,但各个数据的重复次数大致相等时,众数往往没有特别意义。如果一组数据中出现频数(一组数据中每个数据出现的次数成为频数)最多的是并列的两个数,不是用这两个数的平均数做它们的众数,而是说这两个值都是它们的众数。如果一组数据中没有哪一个数值出现的次数比别的多,我们就说它们没有众数。没有众数,不能说众数为O。众数也可能不是数。
例如:20xx年8月,某书店各类图书销售情况如下图:8月份书店售出各类图书的众数是——。
回答应该是:8月份书店售出各类图书众数是文化艺术类。
②众数的优点。
比较容易了解一组数据的大致情况,不受极端数据的影响,并且求法简便。
③众数的缺点。
当一组数据变化很大时,它只能用来大略地估计一组数据的集中趋势。
(二)三者的计算方法不同。
1.求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
2.求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
3.众数由所给数据可直接求出,出现次数最多的数据就是众数。
(三)三者的适用范围不同。
1.平均数的计算中要用到每一个数据,因而它反映的是一组数据的总体水平,选择特征数表示一组数据的集中趋势时,我们用得最多的是平均数,用它作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数据都有关系,能够最为充分地反映这组数据所包含的信息,在进行统计推断时有重要的作用,但容易受到极端数据的影响。在大多数情况下人们喜欢使用平均数这一指标来代表一批数据或用它来反映大量事物的整体水平。
例如:用平均分反映一个班级学生的某项能力测验结果;用平均分来集中概括一些竞赛场合下各位评委对参赛选手进行评分的总结果等等。
2.中位数是一组数据的中间量,代表了中等水平。中位数在一组数据的数值排序中处于中间位置,在统计学分析中扮演着“分水岭”的角色,由中位数可以对事物的大体趋势进行判断和掌控。在个别的数据过大或过小的情况下,“平均数”代表数据整体水平是有局限性的,也就是说个别极端数据是会对平均数产生较大的影响的,而对中位数的影响则不那么明显。
所以,这时用中位数来代表整体数据更合适。即:如果在一组相差较大的数据中,用中位数作为表示这组数据特征的统计量往往更有意义。
例如:甲乙两学生射击的环数如下:甲:10环、10环、9环、3环。乙:9环、5环、3环、2环。请你试一试如何评价他们的射击成绩。这里甲有2个10环,1个9环,一个意外的3环,对于这个3环,可以看作是一个奇异值或极端数据,如用平均数来评价甲的总成绩就不能客观反映甲的射击环数主要是9环与10环的事实。由于数据中有一个极低数值出现,故计算平均数时就一下子把分数降下来了。采用中位数9.5环较合适。乙的射击成绩中5环以下有3次,还有一次是意外的9环,对这组数据,如计算平均数后是5环,但用5环来代表乙的成绩在一定程度上偏高估计了乙的总体成绩,所以采用中位数4环比较合宜。
3.众数代表的是一组数据的多数水平,若一组数据中众数的频数比较大,并且与其他数据的频数相差较大时,我们一般选用众数。众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
例如:,某班42名同学,年龄11岁的有24个人,年龄10岁的有8个人,年龄12岁的有6个人,年龄超过12岁的有4个人。则该班同学年龄分布的众数为11岁,它表明该班年龄为11岁的同学最多。(注意众数不是24人)
总之,平均数、中位数和众数从不同的侧面向我们提供了一组数据的面貌,我们可以把这三种特征数作为一组数据的代表,但它们所表示的意义是不同的。
选用它们表示一组数据的集中趋势时,一般是遵循“多数原则”,即哪种特征数能代表这组数据的绝大多数,正确选用合适的特征数来说明、评价、分析实际问题,避免误用和滥用。关于平均数、中位数、众数的知识我们可以总结为:
分析数据平中众,比较接近选平均,相差较大看中位,频数较大用众数;所有数据定平均,个数去除数据和,即可得到平均数;大小排列知中位;整理数据顺次排,单个数据取中问,双个数据两平均;频数最大是众数。