范文网 >资料大全 >综合资料 >《比例的意义和基本性质》教学设计

《比例的意义和基本性质》教学设计

曼雁 分享更新时间:
投诉

《比例的意义和基本性质》教学设计

作为一位杰出的老师,可能需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。如何把教学设计做到重点突出呢?以下是小编为大家整理的《比例的意义和基本性质》教学设计,希望对大家有所帮助。

《比例的意义和基本性质》教学设计1

教学内容:青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。

教学目标:

1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。

2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。

教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

教学难点:自主探究比例的基本性质。

教学过程

一、导入

1、谈话

师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?

生1:比的意义。

生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

生3:比的前项除以后项,所得的商就是比值。

……

(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)

二、合作探究,学习新知

1、比例的意义

师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?

生:比例?(书:课题比例)

师:看到这个课题你想知道什么?

(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)

生:什么叫比例呢?

生:(书)表示两个比相等的式子叫做比例。

师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)

师:你也能举出一个这样的例子,对吗?请你举出一个这样的'例子,再给同桌说说为什么能组成比例?

(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。

师:通过以上练习,你认为这句话中哪些词最重要?为什么?

生1:两个比,不是一个比

生2:相等,这个比必须相等

生3:式子,不是两个等式是式子。

师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?

(1)0、8:0、3和40:15

(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15

(4)3/18和4/24

(学生独立判断,师巡视指导,然后汇报)

师:先说能否组成比例,再说明理由,

生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。

同理教学:(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。

师:怎样改能使它组成比例呢?

生:4:8=15/2:15或8:2=15:15/4

同理教学(4)3/18和4/24

师:像3/18和4/24是比例吗?

师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?

2、认识比例各部分的名称。

师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?

生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)

师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?

生:2和32是它的内项,16和4是它的外项。

师:请同学们快速抢答老师指的数是比例的外向还是内项。

生:(激烈抢答):外项、、、、、、

师:同学们反应真快,分数的形式中哪些是比例的项呢?

生:2和32是内项,16和4是外项。

师:老师指分数比例学生抢答。

3、探索比例的基本性质。

师:同学们学得真不错,敢不敢和老师来个比赛?

生:(兴趣高涨):敢!

师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?

师:谁来。

生1:4:5,生2:8:9不能组成比例。

生:对。

师:服气吗?不服气咱们再来一次,

生1:1、2:1、8,生2:3:5

师:不能。对吗?

生:对。

师:老师又赢了,这回服气了吧。(学生点头)

师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?

生:想。

师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:

1、可以通过观察、算一算的方法进行研究。

2、你能得出什么结论?)

师:现在请将你的发现在小组里交流一下,看看大家是否同意。

(学生讨论)

师:哪个小组愿意将你们的发现与大家分享?

生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。

师:有道理,不错,还有其他发现吗?

生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。

师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)

师:这是两个外项的积,(师板书:两个外项的积)

(学生板书:16×4=64)

师:这是两个内项的积,(师板书:两个内项的积)

师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?

师:其他组的同学同意他们这个结论吗?

生:同意。

(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)

师:真的所有的比例都是这样吗?怎么验证?

生:可以多举几个例子看看。

师:这是个好建议,那快点行动吧。(学生独立验证)

生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、

生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、

师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。

4、比和比例的区别

师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)

师:哪一组的代表来说一说。

生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。

生:比和比例形式不同。比是一个比,比例是两个比。

生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。

5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。

三、巩固练习

1、下面每组比能组成比例吗?

(1)6:3和8:5(2)20:5和1:4

(3)3/4:1/8和18:3(4)18:12和30:20

生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。

生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。

师:怎样改一下使它们能组成比例?

生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。

生4:还可以把1:4改成4:1,也能组成比例。

生5:第(3)个可以组成比例,因为3/4×3=1/8×18。

生6:第(4)个可以组成比例,因为18×20=360,12×30=360。

师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。

2、填一填。

2:1=4:()1、4:2=():3

3/5:1/2=6:()5:()=():6

师:最后一题还有没有别的填法?

生1:5:(1)=(30):6

生2:5:(30)=(1):6

生3:5:(2)=(15):6

生4:5:(15)=(2):6

师:怎么会有这么多种不同的填法?

生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。

3、用2、8、5、20四个数组成比例。

师:你能用这四个数组成比例吗?

师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?

生:2和20做外项,8和5做内项时有4种:

2:8=5:202:5=8:20

20:8=5:220:5=8:2

8和5做外项,2和20做内项时也有4种:

8:2=20:58:20=2:5

5:2=20:85:20=2:8

四、课堂总结

师:说一说,这节课你有哪些收获?

生1:知道了比例的意义。

生2:学习了比例的基本性质

生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。

师:这节课哪个地方给你留下的印象最深刻?

《比例的意义和基本性质》教学设计2

教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.

教学目标:

知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:理解比例的意义和基本性质.

教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

教学准备:课件

教学过程:

一、激趣导入

1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

2、请同学们看大屏幕,课件出示P32页四幅图。

二、探究新知

1、比例的意义

师问:

①这四幅图中有什么共同的事物?(齐说)

②这四面国旗出现在什么场合或什么地点?(指生回答)

③这四面国旗的长与宽分别是多少?(指生回答)

④这四面国旗的大小相同吗?

说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。

⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)

⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)

师问:

①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。

那么我们能用什么符号可以把它们连接成等式?生:等号

谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40

②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40

③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)

师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)

师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)

师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义

问题:

①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)

②判断两个比能不能组成比例,关键要看什么?

③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)

我们已经了解了比例的意义,下面我来考一考大家:

课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。

2、比例各部分名称

师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的'项?什么是比例的外项?什么是比例的内项?你能举例说明吗?

学生回答上面的问题,教师课件演示。

做一做:指出下面比例的内项和外项(课件出示)

4、5∶2、7=10∶6240/160=144/96

3、比例的基本性质(课件出示)

观察:2、4∶1、6=60∶40

思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)

用下面的比例验证你的发现:

6∶10=9∶158∶2=20∶5

你能用一句话把发现的规律说出来吗?(找3名同学回答)

下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)

师:看大屏幕(课件出示)2、4/1、6=60/40

问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?

指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件

演示2、4/1、6=60/40→2、4X40=1、6X60

4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?

课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?

讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。

因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5

5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示

6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?

生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。

三、巩固新知(课件出示)

做一做,相信你能行!

1、判断

①10∶5=2是比例。()

②在比例里,两个外项的积与两个內项的积的差是O、()

2、填空

①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()

②2:9=8:()

3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)

四、通过这节课的学习,说说你有什么收获或学到了那些知识?

五、课后作业:搜集生活中的比例,看看比例在生活中的作用?

板书设计比例的意义和基本性质

2、4:1、6=3/260:40=3/2

2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。

2、4:1、6=5:10/32、4;1、6=15:10

5:10/3=15:105:10/3=60:40

60:40=15:10

2、4X40=96在比例里,两个外项的积等于两

1、6X60=96个内项的积。这叫做比例的基本性质。

《比例的意义和基本性质》教学反思

本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。

教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。

在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。

习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。

通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。

我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。

本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。

《比例的意义和基本性质》教学设计3

教学目标:

1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

教学重点:

理解比例的意义,探究比例的基本性质。

教学难点:

探究比例的基本性质和应用意义,会判断两个比能否组成比例。

教学过程:

一、创设情境,引入新课

同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?

1、出示三幅场景图(见教材第40页主题图)

2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)

3谈话:在制作国旗的尺寸的过程中也存在有趣的比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。

4、汇报,教师依次出示

二、引导探究,明确意义

(一)比例的意义

(1)观察这三组数据,你有什么发现?

(2)看三组数据,能否从中选出两个比组成等式呢?

(3)学生汇报,教师任选其中的板书

(4)师:肯定学生的回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。

(5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?

(6)试写比例的分数形式。

2、根据意义,判断比例

下面哪组中的两个比可以组成比例?把组成的比例写出来。

(1)学生独立完成。

(2)指名汇报。

(3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?

小结后强调指出,判断两个比能否组成比例,关键是看它们的比值是否相等。

(二)比例的基本性质

师:我们知道比中两个数分别叫做比的前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。

(1)写出一组比例,让学生指出各部分的名称。

(2)如果把比例写成分数的形式,你能找出它的'内项和外项吗?

生独立指出比例的内项和外项。

1、活动探究总结性质

谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?

(1)请你试着写出一些比例:

(2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)

(3)学生探究,教师巡视,收集资源。

(4)探究:你发现了什么?怎么发现的?

(5)验证:有了这样的发现之后,你有什么问题呢?

(6)可以得出什么?(比例的性质)

(7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?

2、运用性质

(1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?

(2)出示一些练习,判断哪一组中的两个比可以组成比例?

三、归纳总结,交流收获

1、本节课学习了什么?

《比例的意义和基本性质》教学设计4

教学内容:

义务教育课程标准实验教科书人教版数学六年级下册。

教学目标:

1.理解和掌握比例的意义和基本性质。

2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。

教学过程:

一、认识比例的意义

1.出示小红、小明在超市购买练习本的一组信息。

(1)根据表中信息,你能选出其中两个量写出有意义的比吗?

(学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)

(2)算算这些比的比值,说说你有什么发现。

(学生说出自己的发现,教师用“=”连接比值相等的两个比。)

(3)说说什么叫比例。

(学生各抒己见,师生共同归纳后板书:比例的意义)

评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

2.即时训练。

A.判断下面每个式子是不是比例,依据是什么?

(1)10∶11(2)15∶3=10∶2

a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。

b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?

评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

3.教学比例各部分的名称。

(1)引导学生读教材(相关内容),认识比例各部分名称。

(2)集体交流。(教师板书:内项、外项)

(3)把比例写成分数形式,指出它的内、外项。

(4)任意写一个比例,同桌相互说一说比例各部分的名称。

二、探究比例的基本性质

1.填数。

(1)出示比例8∶()=()∶3。想一想,这两个空可能是哪两个数。

〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕

(2)观察思考:在填这些数的过程中,你有什么发现?

(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)

(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)

A.先验证黑板上的比例式,再验证自己写的比例式。

B.概括比例的基本性质。同桌相互说一说比例的基本性质。

(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)

评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的.学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。

2.即时训练。

应用比例的基本性质,判断下面的两个比能否组成比例。

3.6∶1.8和4∶24∶9和5∶10

小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。

三、巩固新知,解决问题

1.猜数游戏。

在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?

3∶5=6∶()()∶5=6∶()3∶5=()∶()

2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)

利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)

评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。

总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。

《比例的意义和基本性质》教学设计5

教学目标:

1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

教学重点:理解比例的意义和性质。

教学难点:应用比例的意义和性质判断两个比能否组成比例。

教学准备:多媒体课件一套。

教学过程:

一、渗透情感,导入新课

1、媒体出示国旗画面,学生观察,激发爱国情操。

天安门升国旗仪式

校园升旗仪式

教室场景

签约仪式

师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

2、媒体出示国旗的长和宽,并提出问题。

天安门升国旗仪式:长5米,宽10/3米。

校园升旗仪式:长2.4米,宽1.6米。

教室场景:长60厘米,宽40厘米。

签约仪式:长15厘米,宽10厘米。

师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

3、学生探索,发现问题。

师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

学生自主观察、计算,发现国旗的长和宽的比值相等。

二、认识比例,发现特征

1、引出比例,理解比例的意义。

媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

并板书:2.4∶1.6 =3/2

60∶40=3/2

师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的.式子叫比例。

并板书:2.4∶1.6 =60∶40

2、认识比例,知道比例各项的名称。

⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

⑵学生尝试说说什么叫比例。

⑶教学比例的各部分的名称。

自学课本第34页的第一段话,初步认识比例各项的名称。

出示其中一个比例,指出比例各部分的名称。

学生说说自己写的比例的各项的名称。

⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

⑸判断下列几个比能不能组成比例。

媒体出示,学生判断并说出理由。

下面哪组中的两个比可以组成比例,把组成的比例写出来。

⑴6∶10和9∶15 ⑵20∶5和1∶4

⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4

⑹思考:比和比例有什么联系和区别?

学生自主思考,集体交流,了解比例和比的联系和区别。

3、自主练习,发现比例的基本性质。

⑴媒体出示

8∶4=()∶() 15:10=()∶4 12∶()=()∶5

媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

⑵师提出问题:在一个比例中,它们项有什么特点?

⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

⑷集体交流,发现性质。

学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

⑸观察自己写的其它几个比例,验证发现。

⑹小结性质

学生尝试用完整的数学语言说一说自己的发现。

媒体出示学生的发现,教师指出这就是比例的基本性质。

三、巩固练习,提高认识

1、基本练习

判断,媒体出示

应用比例的基本性质,判断下面哪组中的两个比可以组成比例

⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50

⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5

2、拓展练习。

比一比,谁写得多。

在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

四、总结全课,升华认识

学生回顾全课,说说比例的意义和基本性质。

板书设计:

比例的意义和基本性质

2.4∶1.6 =3/2

60∶40=3/2

《比例的意义和基本性质》教学设计6

教学目标:

1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。

3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。

教学重难点:

教学重点:理解比例的意义和基本性质。

教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

师生问好!

师:课前我们先进行一组口算练习,下面请##同学上台主持。

一、求比值

3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=

5 : 20= 8.8 : 1.1= 16 : 96=

二、化简比

4 : 5= 2 : 20=

32 : 4= 4 : 44=

15 : 25= 10 : 80=

师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分

(小组活动)

师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?

(学生回答)

师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?

(学生回答)

师:同学们真了不起,提出了这么多问题!

学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。

(小组活动)

师:哪个小组的同学愿意来汇报自主学习的内容?

生汇报:我来汇报……其他小组有什么评价或补充吗?

师评价

师:看来同学们学的不错,表示两个比相等的式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?

(生答)

师:我真为你们感到骄傲,想到了这么多不同的答案!

组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

说出老师指的这个数是比例的外项还是比例的内项?

(师指生齐说)

师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成

师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?

师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。

师:看来同学们学的真不错,其实,在比例的2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示

(指1生读温馨提示)

(生合作探究)

师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。

(生汇报展示)

师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的'比例,可发现交叉相乘的积相等。

师:下面我们就用比例的基本性质解决拓展应用

师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?

(生谈收获)

师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》

师:下面我们进行达标检测

(生完成后)

师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。

(小组汇报)

师:全对的同学请举手,组员全对的奖励一颗小印章。

师:同学们这节课表现得真棒,继续努力,好,下课!

教后反思:

《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。 备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:

一、找准知识衔接点,为新知做好铺垫

比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。

二、相信学生利用导学案自学的能力,大胆放手。

课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。

三、从情境图入手,丰富资源

从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。

四、自主探索、合作交流、探究新知。

在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。

五、练习由易到难

每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12 : ( ) = ( ) : 5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。

根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。

每一次的课,总会有一些优点,但也发现了自己的一些不足:

一、采用多种评价方式

二、研究教材、挖掘教材、如何准确地处理和把握教材的能力还有待提高。

只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。

《比例的意义和基本性质》教学设计7

素质教育目标

(一)知识教学点

1.使学生理解掌握比例的意义和基本性质。

2.认识比例的各部分的名称。

(二)能力训练点

1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2.培养学生的观察能力、判断能力。

(三)德育渗透点

对学生进一步渗透辩证唯物主义观点的启蒙教育。

教学重点:

比例的意义和基本性质。

教学难点:

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教具学具准备:

小黑板、投影片、投影仪。

教学步骤

一、铺垫孕伏

教师出示复习题,回忆有关比的知识。

1.什么叫做比?

2.什么叫做比值?

3.求下面各比的比值:

4.上面哪些比的比值相等?

学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)

二、探究新知

1.比例的意义。

出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

从上表中可以看到,这辆汽车,

第一次所行驶的路程和时间的比是______;

第二次所行驶的路程和时间的比是______。

这两个比的比值各是多少?它们有什么关系?

(1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式

(2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

师问:什么叫做比例:组成比例的关键是什么?

生答:表示两个比相等的式子叫做比例。(板书)

引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)

(3)做一做

下面哪组中的两个比可以组成比例?把组成的比例写出来。

①6∶10和9∶15

②20∶5和1∶4

第①题由教师引导学生完成,思路如下:

所以:6∶10=9∶15

其余各题分组讨论后由学生独立完成。

(4)填空

①如果两个比的比值相等,那么这两个比就()比例。

②一个比例,等号左边的比和等号右边的比一定是()的。

2.比例的基本性质。

(1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的.外项,中间的两项叫做比例的内项。(边叙述边板书如下)

(2)让学生看下面这些比例,说出它的外项和内项是多少?

4.5∶2.7=10∶6

6∶10=9∶15

(3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以80∶2=200∶5为例,指名来说明。(师边板书如下)

外项积是:80×5=400

内项积是:2×200=400

80×5=2×200

(4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。

(5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)

(板书课题:加上“和基本性质”,使课题完整。)

(6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?

指名回答后,师板书:

(7)做一做

应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

3.阅读课本第9、10页的内容并填空。

三、巩固发展

1.说一说比和比例有什么区别。

讨论后指名说明:

比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。

2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6∶9和9∶12

(2)1.4∶2和7∶10

4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)

2、3、4和6

四、全课小结

这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。

五、布置作业练习一第3题。

《比例的意义和基本性质》教学设计8

教学内容:比例的意义

教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

教学重点:比例的意义。

教学难点:找出相等的比组成比例。

教学过程:

一、旧知铺垫

1、什么是比?

(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1

(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

1.2:1.4=12:14=6:7

2.求下面各比的比值。

12:16:4.5:2.710:6

二、探索新知

1.教学例1。

(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

①说一说各幅图的情景。

②图中有什么相同之处?

(2)你知道这些国旗的长和宽是多少吗?

①出现各图中国旗的长、宽数据。

②测量教室里国旗的长、宽各是多少厘米。

(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

学生回答教师板书:

60:40=

(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

①学生回答长、宽比值。

2.4:1.6=

②两面国旗的长和宽的比值相等。

板书:2.4:1.6=60:40

也可以写成=

(5)什么是比例?

在这一基础上,教师可以明确告诉学生比例的意义,并板书:

表示两个比相等的式子叫做比例。

(6)找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

过程要求:

①学生猜想另外两面国旗长、宽的比值。

②求出国旗长、宽的比值,并组成比例。

③汇报。

如:5:=15:10=

5:=15:105:=2.4:1.6

==

2.做一做。

完成课文“做一做”。

第1题。

(1)什么样的比可以组成比例?

(2)把组成的比例写出来。

(3)说一说你是怎么找的。

(4)同学之间互相交流,检验各自所写的比例。

第2题。

(1)学生独立写比例,看谁写得多。

(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3.课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

三巩固练习

完成课文练习六第1~3题。

四作业

课后记:

教学内容:比例的基本性质

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的'基本质性。

教学过程:

一、旧知铺垫

1.什么叫做比例?]

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4:和5:2

:和:0.2:和1:4

3.用下面两个圆的有关数据可以组成多少个比例?

如(1)半径与直径的比:=

(2)半径的比等于直径的比:=

(3)半径的比等于周长的比:=

(4)周长与直径的比:=

二探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外

项项项项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:

两个外项的积是×=0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

《比例的意义和基本性质》教学设计9

一、教学目标

知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点

重点:理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计

(一)创设情境,提出问题

1.复习导入:

(1)什么叫做比?

两个数相除又叫做两个数的比。

(2)什么叫做比值?

比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:

12:16= 4、5:2、7= 10:6=

谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:

一辆货车运输大麦芽情况

第一天第二天

运输次数2 4

运输量(吨)16 32

根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

谈话:谁来交流?跟大家说一下你的问题是什么?

学生可能出现以下的问题:

货车第一天的运输量与运输次数的比是多少?(16 : 2)

货车第二天的运输量与运输次数的比是多少?(32:4)

货车第二天的运输量与第一天运输量的比是多少?(32:16)

(师根据学生的回答,将答案一一贴或写于黑板)

2:16;4:32;16:2;32:4;

16:32;2:4;32:16;4:2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16:2;32:4)看能发现什么?(学生会发现比值相等)

思考:这个比值所表示的实际意义是什么?(每次的运输量)

既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

学生先把2:16=4:32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

2、比和比例有什么区别?

4︰6

比例

2︰3=4︰6

3.判断下面两个比能否组成比例?

6∶9和9∶12

总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的.秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

5、学生先独立思考,再小组交流,探究规律。

出示研究方案:

①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?

6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?

(2)还有其他发现吗?

(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:

应用比例的基本性质,判断下面两个比能不能组成比例.

6∶3和8∶5

方法:a、先假设这两个比能组成比例

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升

1、判断下面每组中两个比能否组成比例?

1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

让学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4=12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:

2:1=4:()1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4和6

因为2 × 6 = 3 × 4所以这四个数可以组成比例

2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结

在这节课中你又有什么新的收获?

《比例的意义和基本性质》教学设计10

第一课时比例的意义

教学内容:

比例的意义(教材第40页的内容)

教学目标:

1、理解和掌握比例的意义。

2、了解比和比例的区别与联系。

2、能用比例的意义判断两个比能否组成比例。

教学重难点:

1、认识比例,理解比例的意义。

2、在已有知识的基础上,结合实例引出新的知识。

教具准备:

情景图、多媒体课件、习题卡。

教学过程:

一、导入

出示课题:比例

看到课题你想到了以前学过的什么知识?(生1,生2等回答)

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5

求完比值你觉得哪些比有联系?

【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】

“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义

二、揭题示标。

预设:生:1、比例的意义是什么?

生:2、比例的意义有什么作用?

(师趁机板书在黑板右上角)

【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】

本节课我们就来完成这两个目标:

三、自主探索

出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?

【设计意图:对学生同时进行思想品德教育和爱国教育】

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)

【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】

(二)自学

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享

谁愿意把你的结果和大家分享?师相机板书

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

出示“比例的意义”概念

擦去开始板书中的“?”并把比例可用分数形式表示板书出来

【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】

师:你能说一说组成比例要具备哪些条件吗?

生:…

师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?

生:…

【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】

四、当堂检测(牛刀小试)

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21

(2)15∶3和60∶12

五、当堂训练:

1、把下面的式子进行归类:

(5)72:8=3X3(6)3.6:6=0.6

比:()

比例:()

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()

(2)、如果两个比可以组成比例,那么这两个比

的比值一定相等。()

(3)、比值相等的两个比可以组成比例。()

(4)、0.1∶0.3与2∶6能组成比例。()

(5)、组成比例的两个比一定是最简的整数比.()

六、拓展提升(思绪飞扬)

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?

设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握

七、全课总结

今天这节课你有什么收获?

八、课堂作业

第43页第2、3题。

九、抽查清。(每组4号同学完成)

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5

十、板书设计

比例的意义

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

十一、教学反思:

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的.知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。