范文网 >资料大全 >综合资料 >高一数学教案最新精选五篇

高一数学教案最新精选五篇

毒盅 分享更新时间:
投诉

着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别人大的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。下面就是小编给大家带来的高一数学教案,希望能帮助到大家!

高一数学教案1

教学准备

教学目标

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4.掌握向量垂直的条件.

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

一、复习引入:

1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

五,课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、课后作业

P107习题2.4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业

P107习题2.4A组2、7题

板书

高一数学教案2

学习目标1.能根据抛物线的定义建立抛物线的标准方程;

2.会根据抛物线的标准方程写出其焦点坐标与准线方程;

3.会求抛物线的标准方程。

一、预习检查

1.完成下表:

标准方程

图形

焦点坐标

准线方程

开口方向

2.求抛物线的焦点坐标和准线方程.

3.求经过点的抛物线的标准方程.

二、问题探究

探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.

例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.

例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.

例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.

三、思维训练

1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.

2.抛物线的焦点到其准线的距离是.

3.设为抛物线的焦点,为该抛物线上三点,若,则=.

4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.

5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

四、课后巩固

1.抛物线的准线方程是.

2.抛物线上一点到焦点的距离为,则点到轴的距离为.

3.已知抛物线,焦点到准线的距离为,则.

4.经过点的抛物线的标准方程为.

5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.

6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.

7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

高一数学教案3

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

一.教学过程:

1.使学生熟练掌握函数的概念和映射的定义;

2.使学生能够根据已知条件求出函数的定义域和值域;3.使学生掌握函数的三种表示方法。

二.教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:

(),yf_

其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_叫值域(range)。显然,值域是集合B的子集。

注意:

①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4.区间及写法:

设a、b是两个实数,且a

(1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

(2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法①解析法②列表法③图像法

高一数学教案4

一、教学目标

(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

(2)理解逻辑联结词“或”“且”“非”的含义;

(3)能用逻辑联结词和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

三、教学过程

1.新课导入

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

学生举例:平行四边形的对角线互相平.……(1)

两直线平行,同位角相等.…………(2)

教师提问:“……相等的角是对顶角”是不是命题?……(3)

(同学议论结果,答案是肯定的.)

教师提问:什么是命题?

(学生进行回忆、思考.)

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投_和学生讨论以下问题.)

例1判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍逻辑联结词“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.

对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思.

对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集.

命题可分为简单命题和复合命题.

不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

(4)命题的表示:用,,,,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

我们接触的复合命题一般有“或”、“且”、“非”、“若则”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

对于给出“若则”形式的复合命题,应能找到条件和结论.

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课

例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1);

(2)0.5非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若,则.

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

例3写出下表中各给定语的否定语(用课件打出来).

若给定语为

等于

大于

都是

至多有一个

至少有一个

至多有 #FormatImgID_0#  个

其否定语分别为

   分析:“等于”的否定语是“不等于”;

“大于”的否定语是“小于或者等于”;

“是”的否定语是“不是”;

“都是”的否定语是“不都是”;

“至多有一个”的否定语是“至少有两个”;

“至少有一个”的否定语是“一个都没有”;

“至多有个”的否定语是“至少有个”.

(如果时间宽裕,可让学生讨论后得出结论.)

置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)

4.课堂练习:第26页练习1,2.

5.课外作业:第29页习题1.61,2.

高一数学教案5

【内容】建立函数模型刻画现实问题

【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发现或建立数学模型,并能体会数学在实际问题中的应用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。在一个具体问题的解决过程中,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成。;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正理解函数模型的应用和在应用过程中函数模型的建立与解决问题的过程,而从简单、典型、学生熟悉的函数模型中挖掘、提炼出来的思想和方法,更容易被学生接受。同时,应尽量让学生在简单的实例中学习并感受函数模型的选择与建立。因为建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。在这个过程中,要使学生着重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】

(1)体现建立函数模型刻画现实问题的基本过程.

(2)了解函数模型的广泛应用

(3)通过学生进行操作和探究提高学生发现问题、分析问题、解决实际问题的能力

(4)提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度

【重点】了解并建立函数模型刻画现实问题的基本过程,了解函数模型的广泛应用

【难点】建立函数模型刻画现实问题中数据的处理

【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本过程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)

【学生学习中预期的问题及解决方案预设】

①描点的规范性;②实际操作的速度;③解析式的计算速度④计算结束后不进行检验

针对上述可能出现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用计算器利用小组讨论来进行多人合作以期提高相应计算速度,在解析式得出后引导学生得出的标准应该是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行筛选从而引出检验.

【教学用具】多媒体辅助教学(ppt、计算机)。

【教学过程】

教学前言:

函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.

【教学过程】

教学前言:

函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.

教学内容师生活动设计意图

探究新知引入:

教师:大家觉得我胖吗?

学生回答

教师:我们在街上见到一个人总是会判断这个人的胖瘦,我们衡量一个人的胖瘦一般是以自己或是他人为标准的,那么我们还见过一些用来计算人胖瘦的式子,目前全世界都使用体重指数(BMI)来衡量一个人胖或不胖:

体重/身高?(以米为单位)BMI在18.5-22.5时属正常范围,BMI大于22.5为超重,BMI大于30为肥胖。

教师在黑板上计算一下自己的结果。那既然能用一个式子来计算,说明我们可以把这个问题用数学知识来解决,要得到这个式子之类的标准,我们能用一个人的身高和体重来确定吗?

学生回答

教师:当然是找的人越多越好,那我们在课上先少找几个人来研究一下吧,每个小组选一个同学说一下你的身高和体重吧

学生说,教师把相关数据填在用PPT展示的一张表格上

教师:好,有了这些数据我们就可以来研究了,那接下来我们怎么来处理刚收集到的这些数据呢?

学生回答(预期:画散点图——连线——找函数)

教师:好,大家按小组先画图连线然后讨论一下你们小组认为哪个函数的图像符合

学生活动并回答

教师:好,那大家分一下工,你们几个小组来计算这个函数解析式,那几个小组来计算那个函数解析式……

学生分小组活动……

教师:(把学生算出的式子写在黑板上)大家计算出的解析式为什么会不完全相同呢?

学生回答

教师:我们计算的函数解析式是不是都可以用来刻画这个问题呢?

学生回答

教师:我们要怎么样来检验呢?

学生回答(代入其它的点来验证)

教师:那大家来检验一下哪个模型更符合数据情况

学生分小组进行检验

教师:好了,我们利用刚才收集的数据通过我们的努力得出了一个式子,它也就是符合大家的情况的一个胖瘦的标准,既是我们班的一个标准,能用来衡量其它班的同学吗?那我们来计算一下老师的结果是什么样的.

教师:可见用世界肥胖标准对老师的体重进行的评价和所建立的数学模型计算的结果是基本一致的。由此可见,所建立的模型是大体符合实际情况,看来老师是真得要下定决心减肥了.

教师由生活中常见到的现象引出问题,并引导学生进行思考

学生合作探究、动手实践,借助小组利用数据表格来确定可行的函数模型,并展示自己的结果

教师引导学生对结果进行检验

学生通过计算器与作图,利用小组合作在完成任务的同时形成本节重点并突破难点

通过日常生活的例子引出本节主要内容,来提高学生本节课学习的兴趣,提高小组学习的效率

学生利用小组合作在完成任务的同时形成本节重点的框架:函数刻画实际问题的基本过程.从而实现教学目标1,3,4

课堂小结

教师:我们一起来回忆一下刚才解决问题的过程(引导学生集体回答)

得出:函数建模刻画现实问题的基本过程:(教师用PPT展示)

教师:

①下面大家把自己的数据输入计算一下你的情况是什么样的

②大家在课下可以利用研究性学习的时间,调查一下全年级的同学的身高和体重来研究一下,并进一步体会函数建模来刻画现实问题的基本过程

教师用PPT展示函数建模刻画现实问题的基本过程

教师留下一个扩展性作业,让学生课后完成

学生通过探究从而巩固教学目标1,2,3,4.并形成本节重点.

把问题进行拓展,让学生去亲身体会函数建模刻画现实问题的基本过程,从而巩固了本节教学目标