范文网 >资料大全 >综合资料 >2020高一数学必背知识点精选总结五篇

2020高一数学必背知识点精选总结五篇

静谧 分享更新时间:
投诉

  高一学生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。下面就是小编给大家带来的关于高一数学知识点,希望大能帮助到大家!       高一数学知识点1

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。AÍA

  ②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AÍB,BÍC,那么AÍC

  ④如果AÍB同时BÍA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集个数:

  有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

  高一数学知识点2

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

  方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  求函数的零点:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

  高一数学知识点3

  ⑴奇函数和偶函数的性质

  ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

  ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

  ⑵函数奇偶性判断思路

  ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

  ⅱ确定f(x) 和f(-x)的关系:

  若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;

  若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

  高一数学知识点4

  第一章:空间几何

  三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

  在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

  第二章:点、直线、平面之间的位置关系

  这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。

  关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

  第三章:直线与方程

  这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。

  第四章:圆与方程

  能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。

  高一数学知识点5

  1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。2、函数定义域的解题思路:⑴ 若x处于分母位置,则分母x不能为0。⑵ 偶次方根的被开方数不小于0。⑶ 对数式的真数必须大于0。⑷ 指数对数式的底,不得为1,且必须大于0。⑸ 指数为0时,底数不得为0。⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。⑺ 实际问题中的函数的定义域还要保证实际问题有意义。3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。⑵ 定义域一致,对应法则一致。4、函数值域的求法⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。5、函数图像的变换⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。⑵ 伸缩变换:在x前加上系数。⑶ 对称变换:高中阶段不作要求。6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。⑶ 不要求集合B中的每一个元素在集合A中都有原象。7、分段函数⑴ 在定义域的不同部分上有不同的解析式表达式。⑵ 各部分自变量和函数值的取值范围不同。⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。 

1.2020最新高一数学知识点归纳总结5篇

2.最新2020高一数学知识点总结归纳5篇

3.2020最新高一数学知识点5篇总结

4.2020最新高二数学知识点归纳总结5篇精选

5.精选最新高一数学知识点总结归纳5篇