范文网 >资料大全 >综合资料 >七年级数学教案大全

七年级数学教案大全

颜若惜 分享更新时间:
投诉

编写教案可以使课堂教学活动称为一种有计划、有目的、有条不紊、有效率的教学活动,从而提高教学效果。想知道如何写出优秀的七年级数学教案大全吗?这里为大家分享七年级数学教案大全,快来学习吧!

七年级数学教案大全篇1

教学目标

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动)设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

问题1:观察黑板上的9个数,并给它们进行分类。

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。

按照书本的说法,得出“整数”“分数”和“有理数”的概念

看书了解有理数名称的由来。

“统称”是指“合起来总的名称”的意思。

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

2,教科书第10页练习。

此练习中出现了集合的概念,可向学生作如下的说明。

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业

1,必做题:教科书第18页习题1.2第1题

2,教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

七年级数学教案大全篇2

一、知识与技能

(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。

(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

二、过程与方法

通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力。

三、情感态度与价值观

培养学生积极参与探索活动,体会数形结合的方法。

教学重、难点与关键

1.重点:正确理解绝对值的概念,能求一个数的绝对值。

2.难点:正确理解绝对值的几何意义和代数意义。

3.关键:借助数轴理解绝对值的几何意义,根据绝对值定义和相反数的概念,理解绝对值的代数意义。

四、教学过程

1.复习提问,新课引入

2.什么叫互为相反数?

3.在数轴上表示互为相反数的两个点和原点的位置关系怎样?

五、新授

在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向。

1.观察课本第11页图1.2-5,回答:

(1)两辆汽车行驶的路线相同吗?

(2)它们行驶路程的远近相同吗?

这两辆车行驶的路线不同(方向相反),但行驶的路程的远近相同,都是10km.

课本图1.2-5中表示-10的&39;点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值。

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│。

这里的数a可以是正数、负数和0.

七年级数学教案大全篇3

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

七年级数学教案大全篇4

教学目标:

1.借助数轴了解相反数的概念,知道互为相反数的位置关系.

2.给一个数,能求出它的相反数.

教学重点:理解相反数的意义.

教学难点:理解和掌握双重符号简化的规律.

教与学互动设计:

(一)创设情境,导入新课

活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.

交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?

(二)合作交流,解读探究

1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.

想一想 (1)上述各对数有什么特点?

(2)表示这四对数的点在数轴上有什么特点?

(3)你能够写出具有上述特点的n组数吗?

观察 像这样只有符号不同的两个数叫相反数.

互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.

总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.

2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.

(三)应用迁移,巩固提高

【例1】填空

(1)-5.8是_____的相反数,_____的相反数是-(+3),a的相反数是_____;a-b的相反数是_____,0的相反数是_____.

(2)正数的相反数是_____,负数的相反数是_____,_____的相反数是它本身.

【例2】 下列判断不正确的有(  )

①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.

A.1个  B.2个  C.3个  D.4个

【例3】 化简下列各符号:

(1)-[-(-2)];  (2)+{-[-(+5)]};

(3)-{-{-…-(-6)}…}(共n个负号).

【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.

【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?

(四)总结反思,拓展升华

【归纳】  (1)相反数的概念及表示方法.

(2)相反数的代数意义和几何意义.

(3)符号的化简.

(五)课堂跟踪反馈

夯实基础

1.判断题

(1)-3是相反数.(  )

(2)-7和7是相反数.(  )

(3)-a的相反数是a,它们互为相反数.(  )

(4)符号不同的两个数互为相反数.(  )

2.分别写出下列各数的相反数,并把它们在数轴上表示出来.

1,-2,0,4.5,-2.5,3

3.若一个数的相反数不是正数,则这个数一定是(  )

A.正数 B.正数或0

C.负数 D.负数或0

4.一个数比它的相反数小,这个数是(  )

A.正数 B.负数

C.非负数 D.非正数

5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是_____

提升能力

6.若a与a-2互为相反数,则a的相反数是____

7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.

七年级数学教案大全篇5

【学习目标】

1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.

2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.

【学习重点】

利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.

【学习难点】

两个负数大小的比较.

行为提示:创景设疑,帮助学生知道本节课学什么.

行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.

教会学生落实重点.

情景导入 生成问题

旧知回顾:

1.什么是绝对值?

答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.

2.正数、负数、0的绝对值分别是什么?

答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

自学互研 生成能力

知识模块一 用数轴比较有理数的大小

阅读教材P14~P15的内容,回答下列问题:

问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?

答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.

方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.

学习笔记:

行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.  

典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是( A )

A.a>b>c      B.a>c>b

C.b>c>a D.c>b>a

仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( C )

A.-aC.a<-1<-a D.a<-a<-1

仿例2:把下列各数在数轴上表示出来,并用“<”连接各数.

-1.5,-0.5,-3.5,-5.

解:将这些数在数轴上表示出来,如图:

从数轴上可看出:-5<-3.5<-1.5<-0.5.

知识模块二 用法则比较有理数的大小

阅读教材P15的内容,回答下列问题:

问题:两个负数怎样比较大小?

答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较.

典例:比较大小:

(1)-2.1<1;      (2)-3.2>-4.3;

(3)-12<13; (4)-14<0.

仿例1:比较-12、-13、14的大小结果正确的是( A )

A.-12<-13<14         B.-12<14<-13

C.14<-13<-12 D.-13<-12<14

仿例2:比较下列各对数的大小:

(1)-(-3)与|-2|;

解:∵-(-3)=3,|-2|=2,

∴-(-3)>|-2|;     (2)-(-6)与|-6|.

解:∵-(-6)=6,|-6|=6,

∴-(-6)=|-6|.

变例:整数x满足|x|<3,则x=-2、-1、0、1、2,负整数x满足3<|x|≤6,则x=-4、-5、-6.

交流展示 生成新知

1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.

2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.

知识模块一 用数轴比较有理数的大小

知识模块二 用法则比较有理数的大小

检测反馈 达成目标

【当堂检测】见所赠光盘和学生用书

【课后检测】见学生用书

课后反思 查漏补缺

1.收获:________________________________________________________________________

2.困惑:________________________________________________________________________

七年级数学教案大全篇6

一、指导思想:

20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

二、教学目标要求:

期中授完第六章,期末授完下册全册。

三、提高质量措施:

1、教师要认真学习新的《数学课程标准》,把新课程的基本理念渗透到教与学的全过程。要重视学生知识的建构和能力的培养;要重视学生的学习过程的展示和学习方法的提炼;要重视学生的学习情感的陶冶、学习态度和价值观的导向。教师要与新课程一同成长。

2、教学中要树立全新的学习观。学习要转向受教育者,突出学生学习的主体地位。即把活跃在教学舞台上的主动权交给学生,让学生真正成为学习的主角。教育的方式要由接受转向“学教”,即提倡学生的探索、求知在先,教师的指导、帮助在后,要给学生“悟”的时间与空间。教师的“教”应由学生的“学”来确定。要倡导自主学习、探究学习、合作学习和研究性学习。

3、教学中要树立全新的知识观。人的知识分显性知识和隐性知识。显性知识是教师灌输给学生的知识,它们是浅层次的知识,是比较易于遗忘的东西。隐性知识是学生发现学习得到的知识,如通过体验、顿悟、自省、直觉而得到的,极易保持的、带有一定感情色彩的东西。教师要摒弃以“量”为主的知识观,树立以知识的“质”和“结构”为主的观念,关注学生的隐性知识的摄取,注意渗透人文知识并努力使“教师”这一隐性课程知识美好地呈现给学生。

4、教师要树立全新的教学观。由教“学答”转变为教“思维”,注重学生的思维训练,注重创造性思维品质的培养。

5、加强七年级几何入门教学

6、科学组织复习备考。要转变以知识立意为能力立意的复习备考策略,突出数学思想与数学方法,注重数学的工具性和应用性。

七年级数学教案大全篇7

教材简析:

本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量系列出求吃1/2个、1/3个、1/4个,可以分给几人的算式,然后通过观察、操作探索出一个数的几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷2/3的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的.5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。

教学目标:

1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的式题。

2、使学生在探索整数除以分数计算方法的过程中,进一步体会猜想——验证的数学思想方法。

3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增强学好数学的自信心。

教具准备:

课件

教学过程:

一、谈话导入

同学们,吃是为了汲取生理上的营养,学是为了汲取精神上的养份。今天,我们采用“边品边学”的方式,学习“整数除以分数”。

揭题:整数除以分数

二、提出猜想

1、谈话:老师带来了同样大小的4个橙子(媒体呈现)

如果每人吃2个,可以分给几人怎么列式?

学生口头列式。

提问:为什么用4÷2计算呢?

学生回答后,师小结:也就是说把4个橙子,按2个一份平均分,可以用除法计算。

问:如果每人吃一个呢?

学生口头列式。

2、出示:如果“每人吃1/2个,可以分给几人”又怎么列式?

学生口头列式,教师板书:4÷1/2

追问:为什么用除法计算?

学生回答后,师小结:就是把4个橙子,按个一份平均分,因此也是用除法计算(课件出示)

3、谈话:请看屏幕,从图中你数出4÷1/2得多少?(教师随学生回答板书4÷1/2=8)

提问:从这幅图中,你还能想到什么?

(一个橙子分给2个人,4个橙子就能分给8个人。)

学生回答,教师恰当评价。

教师针对学生的回答,继续提问:如果这样想又怎样列式?(教师板书4×2=8)

4、思考:仔细对比这两个式子,你有什么发现?

学生先独立思考,再在小组里交流自己的想法。

反馈时恰当评价。(教师板书4÷1/2=4×2)

三、进行验证

(一)验证一

过渡:是不是所有的整数除以分数都能用以上几个同学说的方法做呢?这只是我们的猜想,还需进一步验证。(板书猜想、验证)

1、出示:如果每人吃1/41/4个,可以分给几人?

学生口头列式

提问:按刚才的方法,可以怎么计算?结果是多少?

(学生回答,教师板书4÷1/4=4×4=16)

谈话:结果是否正确,我们来验证一下

请每个同学拿出4个同样大小的圆片代表橙子,用笔分一分。

学生操作,教师巡视指导。

反馈:你是怎么分的,分得结果是多少?(随学生利用实物投影仪演示)

小结:操作的结果和刚才计算的结果是一样的。

2、出示:如果每人吃1/31/3个呢?

请学生先列式计算,用圆纸片分一分的方法求证结果是否正确。

反馈交流(辅以电脑演示)

小结:通过验证,再次证明了刚才的猜想是正确的。

(二)验证二

过渡:刚才研究的都是整数除以几分之一的题目,整数除以几分之几的题目,有没有类似的规律,我们继续探索。

1、出示例3(电脑出现图示)

提问:怎么理解2/3米?

2、让学生独立列式算一算。

3、学生做好后追问:这个结果是否正确,请同学们打开书57也在例3的图中动笔分一分进行验证。

4、学生独立思考后在小组里交流,全班反馈时指名学生在投影仪下演示。

四、获得结论

1、观察比较

学生观察黑板上的一些算式:

4÷1/2=4×2=8

4÷1/3=4×3=12

4÷1/4=4×4=16

4÷2/3=4×3/2=6

说说这些乘式中的第二个因数与除式中的除数有什么关系?

3、思考概括

通过以上操作活动你认为整数除以分数可以怎样计算?小组里交流回报。

五、巩固练习

过渡:今天的知识大餐你品出了哪些滋味,不妨来回味一番。

1、填一填12÷2/3=12×(3/2)=189÷6/7=9×(7/6)=21/2

2、找朋友

3、练习十一第5题

先出示前一部分要求,学生想一想后再让学生算一算,体会计算方法的正确性。

4、算一算10÷2/58÷2/33÷6/712÷8/7

说明:转化成乘法后,能约分的要先约分。

5、算一算、比一比

(1)逐一出示第一组题,师:老师这儿有一组题,比一比谁算得又快又对。准备笔和草稿纸,算出答案马上举手。

提问:做这组题要注意什么?

6、实际问题

谈话:现在,人们出行都有便利的交通工具,下面是自行车、小轿车、摩托车行使30千米所用时间表,你能求出它们各自的速度吗?

提示:单位用千米/时

六、课堂小结

今天学习了整数除以分数的内容,你有什么收获?

明天将要学习分数除以分数,你有什么想法呢?

七、布置作业

书60页第6题。

七年级数学教案大全篇8

教学目标 1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习 例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学教案大全篇9

教学目标

知识与能力

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

教学思考

能用实验对数学猜想做出检验,从而增加猜想的可信度。解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

教学重点难点:

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

教学过程

创设情境,切入标题

同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。新课探究

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里)实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的`实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

游戏与交流

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

随堂练习

指导学生完成教材第206页习题。

课时小结

学生可从各个方面加以小结。布置作业

仿照课堂游戏,自编一个新的游戏。能否利用扑克牌设计本节转盘游戏。

七年级数学教案大全篇10

教学目标:

1.理解有理数的意义.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

教学重点:会把所给的各数填入它所在的数集图里.

教学难点:掌握有理数的两种分类.

教与学互动设计:

(一)创设情境,导入新课

讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议 你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明 我们把所有的这些数统称为有理数.

试一试 你能对以上各种类型的数作出一张分类表吗?

有理数

做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

有理数

数的集合

把所有正数组成的集合,叫做正数集合.

试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

(三)应用迁移,巩固提高

【例1】 把下列各数填入相应的集合内:

,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

有理数 有理数

(四)总结反思,拓展升华

提问:今天你获得了哪些知识?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(五)课堂跟踪反馈

夯实基础

1.把下列各数填入相应的大括号内:

-7,0.125, ,-3 ,3,0,50%,-0.3

(1)整数集合{};

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

2.下列说法中正确的是(  )

A.整数就是自然数

B. 0不是自然数

C.正数和负数统称为有理数

D. 0是整数,而不是正数

提升能力

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

七年级数学教案大全篇11

一、知识导航

1、主要概念:变量是 ;自变量是 ;因变量是 。

2、变量之间关系的三种表示方法: 。

其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把 的值找到,查询方便;但是欠 ,不能反映变化的全貌,不易看出变量间的对应规律。

关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。

3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。

二、学习导航

1、有关概念应用

例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?

① 用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;

②正方形边长是3,若边长增加x,则面积增加为y.

2、利用表格寻找变化规律

例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:

施肥量

(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量

(吨/公顷) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75

上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?

变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:

时间/秒 0 1 2 3 4 5 6 7 8 9 10

速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9

①上表反映了哪两个变量之间的关系?哪个是因变量?

②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?

③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加?

④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?

3、用关系式表示两变量的关系

例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。

变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是: 

4、用图像表示两变量的关系

例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:

(1)5月6日新增确诊病例人数为 人;

(2)在5月9日至5月11日三天中,共新增确诊病例人数为 人;

(3)从图上可看出,5月上半月新增确诊病例总体呈 趋势.

例5、(陕西) 星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( ).

A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了

B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了

C.从家出发,一直散步(没有停留),然后回家了

D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返变式 (成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发 小时与电动自行车相遇;电动自行车的速度为 千米/时;汽车的速度为 千米/时;汽车比电动自行车早 小时到达B地.

三、一试身手

1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是(  )

2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)

之间的关系如图所示.

请根据图象所提供的信息解答下列问题:

(1)甲、乙两根蜡烛燃烧前的高度分别是______,

从点燃到燃尽所用的时间分别是_______;

(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?

3、(2006宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是(  )

A.8.6分钟 B.9分钟

C.12分钟 D.16分钟

4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8 所示.

回答问题:(1)机动车行驶几小时后加油?

(2)中途中加油_________L;

(3)已知加油站距目的地还有 ,车速为 ,

若要达到目的地,油箱中的油是否够用?并说明原因.

5、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.

所挂质量

0 1 2 3 4 5

弹簧长度

18 20 22 24 26 28

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当所挂物体重量为 时,弹簧多长?不挂重物时呢?

(3)若所挂重物为 时(在允许范围内),你能说出此时的弹簧长度吗?

6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题:

(1)求降价前销售金额y(元)与售出西瓜 (千克)之间的关系式;

(2)小明从批发市场共购进多少千克西瓜?

(3)小明这次卖瓜赚子多少钱?

7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象.

(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?

(2)通话多少分钟内,所支付的电话费不变?

(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是 ,那么通话4分钟的电话费是多少元?

8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题:

(1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3?

(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?

(3)按此规律,持续干旱多少天时,水库将干涸?

9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为 元和 元.

(1)写出 、 与x之间的关系式;

(2)一个月内通话多少分钟,两种移动通讯费用相同?

(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?

七年级数学教案大全篇12

一、教学目标

1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个

负数的大小。(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。2、过程与方法目标:(1)、通过运用“”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学

生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过

观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言

表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

二、教学重点和难点

理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

三、教学过程:

1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)

四、小组对学案进行分任务展示

(一)、温故知新:

前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?

(二)小组合作交流,探究新知

1、观察下图,回答问题:(五组完成)

大象距原点多远?两只小狗分别距原点多远?

归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.

4的绝对值记作,它表示在上与的距离,所以4=。

2、做一做:

(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)

(1)4,-4;(2)0.8,-0.8;

从上面的结果你发现了什么?

3、议一议:(八组完成)

(1)+2=,

1=,+8.2=;5(2)-3=,-0.2=,-8=.(3)0=;

你能从中发现什么规律?

小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

4、试一试:(二组完成)

若字母a表示一个有理数,你知道a的绝对值等于什么吗?

(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

5:做一做:(三组完成)

1、(1)在数轴上表示下列各数,并比较它们的大小:

-3,-1

(2)求出(1)中各数的绝对值,并比较它们的大小

(3)你发现了什么?

2、比较下列每组数的大小。

(1)-1和–5;(五组完成)(2)?

(3)-8和-3(七组完成)

5和-2.7(六组完成)6五、达标检测:

1:填空:

绝对值是10的数有()

+15=()–4=()

0=()4=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()

(4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()

六、总结:

1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

2.绝对值的性质:正数的绝对值是它本身;

负数的绝对值是它的相反数;0的绝对值是0.

因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:(1)如果a>0,那么a=a(2)如果a<0,那么a=-a(3)如果a=0,那么a=0

3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

七、布置作业

P50页,知识技能第1,2题.

七年级数学教案大全篇13

一、指导思想

以课改理念:一切为了学生,为了学生的一切,为了一切学生的终身发展为指导,依据学校工作计划,加强学习,坚持以德育为核心,以教学为中心、

二、学情分析

本学期,我担任七年级1班和2班的数学,通过上学期的学习,学生基本上适应了初中数学的学习,学生在数学上的计算能力、阅读理解能力、实践探究能力、逻辑思维与逻辑推理能力得到了相应的发展,对图形及图形间的关系有了初步认识,但还有一部分同学没有达到应该达到的高度,另外学生自主拓展知识的能力几乎没有,学生不能自行拓展与加深自己的知识面、因此本学期在此方面应当加强!

三、教材分析:

本学期学习的章节:有《整式的运算》、《平行线与相交线》、《生活中的数据》、《概率》、《三角形》、《变量之间的关系》、《生活中的轴对称》、各章教学内容概述如下:

《整式的运算》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础、重点是探索整式运算的.运算法则,理解整式运算的算理,推导乘法公式、难点是灵活运用整式运算法则解决一些实际问题,正确地运用乘法公式、

《平行线与相交线》:两条直线被第三条直线所截,即所谓的三线八角问题和对平行线的讨论是平面几何中重要的议题,也是基础性的内容,有很大的教育价值、平行线的条件和平行线的特征是本章的重点,也是难点、

《生活中的数据》:包括数和数据的表示两部分内容、在数的讨论中,使学生认识很小的单位分数(百万分之一)和有效数字的概念,体会其意义和作用、重点是会用科学记数法表示较小的数据,能按要求取近似数,能读懂统计图并能从中获取信息、难点是用生活中的事例感受和表述百万分之一的大小,培养数感和建立统计观念,正确掌握近似数、有效数字的特点及数位的关系;对数据信息的处理、加工的能力、

《概率》:在七年级上册感受了可能性有大有小的基础上,进一步刻画可能性的大小,因而十分自然地给出了概率的概念,重点是理解概率的意义,并会计算一些事件发生的概率,能设计出符合要求的简单概率模型、难点是理解概率的意义,并会计算一些事件发生的概率,理解现实世界中不确定现象的特点,树立一定的随机观念、

《三角形》:教材提供许多活动,给学生充分的实践和探索的空间,使他们通过探索和交流发现一些与三角形有关的结论,并应用它解决实际问题、重点是三角形的性质与三角形全等的判定、三角形的分类、难点是能进行简单的说理、

《变量之间的关系》:把变量之间的关系列为单独一章,这是在学习了代数式求值和探索规律等地方渗透了变化的思想基础上引入的,为进一步学习函数概念进行铺垫、重点是在具体情景中从表格关系式、图像中获取信息找出自变量、因变量及其相互之间的关系、难点是通过观察和思考能用自己的语言表达,变量之间的关系以及正确把对变量之间关系进行分析和对变化趋势进行预测、

《生活中的轴对称》:实际上是轴对称图形的认识和讨论,并通过轴对称图形来探索轴对称图形的性质、轴对称可以看成反射变换,也是一种几何变换、事实上,平移和旋转可以经过两次反射变换得到,因此它更基本、重点是研究轴对称及轴对称的基本性质、难点是从具体的现实情境中抽象出轴对称的过程、

整个教材体现了如下特点:

1、现代性更新知识载体,渗透现代数学思想方法,引入信息技术、

2、实践性联系社会实际,贴近生活实际、

3、探究性创造条件,为学生提供自主活动、自主探索的机会,获取知识技能、

4、发展性面向全体学生,满足不同学生发展需要、

5、趣味性文字通俗,形式活泼,图文并茂,趣味直观、

四、教学目标

1、让学生学到的知识技能是社会对青少年所需求的;

2、要让学生知道这是自己终身学习和发展所需要的;

3、教学要贴近生活实际让学生爱数学,自主的学教学;

4、让学生掌握数学基本知识和技能、

五、教学措施:

1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习、

2、兴趣是最好的老师、激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,总之,要让学生对数学产生浓厚的兴趣、

3、引导学生积极参与知识的构建,营造民主和谐、自主探究、合作交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习的乐趣、

4、在课堂教学中将严抓课堂纪律使学生形成自学遵守纪律的习惯,要求他们上课专心听讲,积极发言,作业认真完成、给时间让学生讨论问题,激发学生的学习兴趣,又可以增进同学之间的友谊、

5、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,让学生处于一种思如泉涌的状态、

6、要扭转学生的厌学现象、利用晚自习时间对他们进行辅导,在平时的课堂中多给予提问,给后进生树立信心、对优生要严格要求,端正他们的学习态度,抑制他们产生骄傲情绪、

7、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念、

8、把握学生思想动态,关心学生的学习、生活,利用课余时间多接触学生,及时与学生沟通,建立良好的师生关系、

9、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、

10、改进教学方法,用多媒体,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、

11、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、

12、在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、

13、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:

14、坚持因材施教原则,逐步实施分层教学,向基础不同的学生提出相应的要求,力求使中下生吃得上,中等生吃得下,优生吃得饱,即课堂练习、作业及要求等进行分层、

七年级数学教案大全篇14

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

二、做一做

出示投影3提问:

1、图1—3中,A,B,C之间有什么关系?

2、图1—4中,A,B,C之间有什么关系?

3、从图1—1,1—2,1—3,1—4中你发现什么?

学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

七年级数学教案大全篇15

一、指导思想

新学期里,本人将积极接受学校分配给自己的各项教育教学任务,以强烈的事业心和责任感投入工作。遵纪守法,遵守学校的规章制度,工作任劳任怨,及时更新教育观念,实施素质教育,全面提高教育质量,保持严谨的工作态度,工作兢兢业业,一丝不苟。热爱教育、热爱学校,尽职尽责、教书育人,注意培养班级学生具有良好的思想品德。认真备课上课,认真批改作业,不敷衍塞责,不传播有害班级学生身心健康的思想。

二、学情分析

8班和9班在素质上差距不大,纪律整体比较差、现在的学情与现实决定了并不是付出十分努力就一定有十分收获。但教师的责任与职业道德时刻提醒我,没有付出一定是没有收获的。作为新时代的教师,只有付出百倍的努力,苦干加巧干,才能对得起良心,对得起人民群众的期望。

三、素质教育

我注重推行素质教育,坚决把实施素质教育落实在行动上。关心爱护全体班级学生,尊重班级学生的人格,平等、公正对待班级学生。对班级学生严格要求,耐心教导,不讽刺、挖苦、歧视班级学生,不体罚或变相体罚班级学生,保护班级学生合法权益,促进班级学生全面、主动、健康发展。

导学案是老师讲课的依据,不仅写明教学要求和教学目的,也写清能力训练的内容、要求、目的及教学措施等,不仅体现教学大纲的要求,也保证将大纲要求落实到实处。这样做就能使素质教育在整个教育教学中成为一项必不可少的内容,避免了盲目性,随意性,增强了计划性。在编写教案时注意选择教育的方法和时机,达到既给班级学生传授知识,又开发班级学生思维能力,促进班级学生全面发展。在具体的教学过程中,结合所学内容,使班级学生学习数学知识的同时,也吸取其它方面的“营养”,开阔他们的视野,拓展他们的知识面,培养实事求是和刻苦学习的科学态度。

四、教研工作

我将积极参加教学研究工作,不断对教法进行探索和研究。谦虚谨慎、尊重同志,相互学习、相互帮助,维护其他教师在班级学生中的威信,关心集体,维护学校荣誉,共创文明校风。对于素质教育的理论,进行更加深入的学习。在平时的教学工作中努力帮助后进生,采取各种措施使他们得到进步。

五、出勤

在工作中我一定要做到不迟到、不早退,听从领导分配,不挑肥拣瘦讲价钱,平时团结同志,尊老爱幼,做到互相关心,互相爱护。作为一名教师,我一定自觉遵守学校的各项规章制度,以教师八条师德标准严格要求自己,工作严肃认真,一丝不苟,决不应付了事,得过且过,以工作事业为重,把个人私心杂念置之度外,按时完成领导交给的各项任务。

六、本期数学的能力要求

1、基本技能:能够按照一定的程序与骤进行运算、作图或画图,进行简单的推理。

2、逻辑思维能力:会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会准确地阐述自己的思想和观点,形成良好的思维品质。

3、运算能力:不仅会根据法则、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件寻求合理、简捷的运算途径。

4、分析问题和解决问题的能力:能够解决实际问题,是指解决带有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题。在解决实际问题中,把实际问题抽象成数学问题,形成用数学的意识。

七、教学常规

我将积极从提高课堂教学效益的各个侧面探讨提高课堂教学效益的因素。我将积极学习,翻阅有关资料,对教育理论、目标教学、教学方法、学法指导、智力因素和非智力因素等进行再认识,提高用理论来指导实践的能力。积极实行目标教学,根据教材和学情确定每节课的重难点。平时备好课,上好课,向40分钟要质量。坚持周前备课,努力做到备课标、备教材、备班级学生、备教具,备教法学法。从知识能力两方面精心设计教案,并积极地使用各种电教器材,提高课堂教学效益,坚决杜绝课堂教学的盲目性和随意性,在课堂教学方面我力争课堂解决问题,在教学中抓关键,突重点,排疑点,讲求教法,渗透学法,既教书更育人,使班级学生的身心得到全面和谐的发展。

八、学期工作目标

通过本期教学,使班级学生形成一定的数学素质,能自觉运用数学知识解决生活中的数学问题,形成扎实的数学基本功,为今后继续学习数学打下良好的基础。培养一批数学尖子,能掌握科学的学习方法。不及格人数较少。形成良好学风。形成良好的数学学习习惯。形成融洽的师生关系。使班级学生在德、智、体各方面全面发展。