初中数学圆知识点归纳
圆的认识是中学数学平面几何教学中唯一的曲线图形.下面是小编收集整理的初中数学圆知识点,欢迎大家阅读分享借鉴,希望能够帮助到大家,也希望大家能够喜欢。
初中数学圆知识点
1.圆的定义
(1)在一个平面内,线段OA绕它的一个端点O旋转一周, 另一个端点A随之旋转所形成的图形叫做圆。固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。
(2)圆可以看作是平面内到定点的距离等于定长的点的集 合,定点为圆心,定长为圆的半径。
说明:圆的位置由圆心确定,圆的大小由半径确定,半 径相等的两个圆为等圆。
2.圆的有关概念
(1)弦:连结圆上任意两点的线段。(如右图中 的CD)。
(2)直径:经过圆心的弦(如右图中的AB)。 直径等于半径的2倍。
(3)弧:圆上任意两点间的部分叫做圆弧。(如 右图中的CD、CAD)
其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。
(4)圆心角:如右图中∠COD就是圆心角。
3.圆心角、弧、弦、弦心距之间的关系。
(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。 (2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
4.过三点的圆。
(1)定理:不在同一条直线上的三点确定一个圆。
(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。
5.垂径定理。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:
(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对 的另一条弧。
(2)圆的两条平行弦所夹的弧相等。
6.与圆相关的角
(1)与圆相关的角的定义
①圆心角:顶点在圆心的角叫做圆心角
②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。
③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。
(2)与圆相关的角的性质
A
B
①圆心角的度数等于它所对的弦的度数;
②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;
⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;
⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
二.与圆有关的位置关系
1.点与圆的位置关系
如果圆的半径为r,某一点到圆心的距离为d,那么: (1)点在圆外dr (2)点在圆上dr (3)点在圆内dr
2.直线和圆的位置关系
设r为圆的半径,d为圆心到直线的距离
(1)直线和圆相离dr,直线与圆没有交点; (2)直线和圆相切dr,直线与圆有唯一交点; (3)直线和圆相交dr,直线与圆有两个交点。
3.圆的切线
(1)定义:和圆有唯一公共点的直线叫做圆的切线,唯一公共点叫做切点。 (2)切线的判定定理
经过半径的外端且垂于这条半径的直线是圆的切线。 (3)切线的性质定理及推论
定理:圆的切线垂直于经过切点的半径。 推论:
①经过圆心且垂直于切线的直线必经过切点; ②经过切点且垂直于切线的直线必经过圆心。
4.两圆的位置关系
设R、r为两圆的半径,d为圆心距 (1)两圆外离dR+r; (2)两圆外切dR+r; (3)两圆相交R(4)两圆内切d(5)两圆内含d
r
(注意:如果为d=0,则两圆为同心圆。) R-r(R>r)。
5.两圆连心线的性质
(1)相交两圆的连心线,垂直平分公共弦,且平分两条外公切线所夹的角。(注:平分两外公切线所夹的`角,通过角平分线的判定“到角的两边距离相等的点,在这个角的平分线上”,很易证明。)
(2)相切两圆的连心线必经过切点。
(3)相离两圆的连心线平分内公切线的夹角和外公切线的夹角。 6.两圆公切线的性质
(1)如果两圆有两条外公切线,则两外公切线长相等。 (2)如果两圆有两条内公切线,则两内公切线长相等。
8.与圆有关的比例线段问题的一般思考方法 (1)直接应用相交弦、切割线定理及其推论;
(2)找相似三角形,当证明有关线段的比例式或等积式不能直接运用基本定理推导时,通常是由“三点定形法”证三角形相似,其一般思路为等积式→比例式→中间比→相似三角形。 9.与圆相关的常用辅助线 (1)有弦,可作弦心距;
(2)有直径,可作直径所对的圆周角; (3)有切点,可作过切点的半径; (4)两圆相交,可作公共弦; (5)两圆相切,可作公切线; (6)有半圆,可作整圆。
记忆口诀:有弦可作弦心距,中心圆心相连;两圆相切公切线,两圆相交公共弦;遇到切点作半径,圆与圆心连心;遇到直径相直角,直角相对点共圆。(注:“心连心”为连心线。) 10.圆外切三角形和四边形的性质
(1)如右图,△ABC是⊙O的外切三角形,D、E、F为切点,则AD=AF=AB+AC-BD
2同理:直角三角形内切圆半径R=a+b-c。(其中a、b为直角边,c为斜边)
(2)圆外切四边形两组对边和相等,即如右图,四边形ABCD是⊙O的外切四边形,则 AB+CD=AD+BC。
三.圆中的计算问题
1.圆的有关计算
(1)圆周长:c=2pR (2)弧长:l=npR; 1802
(3)圆面积:S=pR;1npR2
(4)扇形面积:S扇形=lR=;2360
(5)弓形面积:S弓形=S扇形±SD
2.圆柱
圆柱的侧面展开图是矩形,这个矩形的长等于圆柱的底面周长c,宽是圆柱的母线长l,如果圆柱的底面半径是r,则S圆柱侧=cl=2prl。
3.圆锥
圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面周长c,半径等于圆锥母线长l,若圆锥的底面半径为r,这个扇形的圆心角为a,则a=r1
360,S圆锥侧=cl=prl。 l2
初中数学圆知识点