范文网 >资料大全 >综合资料 >高一数学教案万能模板下载

高一数学教案万能模板下载

沉苍 分享更新时间:
投诉

编写教案可以帮助教师更好地掌握教学目标和教学内容,从而提高教学质量和效果。好的高一数学教案万能模板下载要怎么写?小编给大家带来高一数学教案万能模板下载,供大家参考。

高一数学教案万能模板下载篇1

教学目标

1.知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

2.过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

3.情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

教学重点难点

教学重点:圆的标准方程理解及运用

教学难点:根据不同条件,利用待定系数求圆的标准方程。

根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

学习者分析

高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

高一数学教案万能模板下载篇2

一、教学目标

1.知识与技能

(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;

(2)体会程序化解决问题的思想,为算法的学习作准备。

2.过程与方法

(1)让学生在求解方程近似解的实例中感知二分发思想;

(2)让学生归纳整理本节所学的知识。

3.情感、态度与价值观

①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;

②培养学生认真、耐心、严谨的数学品质。

二、教学重点、难点

重点:用二分法求解函数f(x)的零点近似值的步骤。

难点:为何由︱a-b︳<便可判断零点的近似值为a(或b)?

三、学法与教学用具

1.想-想。

2.教学用具:计算器。

四、教学设想

(一)、创设情景,揭示课题

提出问题:

(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?

(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?

(二)、研讨新知

一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。

取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;

再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;

由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。

这种求零点近似值的方法叫做二分法。

1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.

生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。

2.为什么由︱a-b︳<便可判断零点的近似值为a(或b)?

先由学生思考几分钟,然后作如下说明:

设函数零点为x0,则a

0

由于︱a-b︳<,所以

︱x0-a︳

即a或b作为零点x0的近似值都达到了给定的精确度。

(三)、巩固深化,发展思维

1.学生在老师引导启发下完成下面的例题

例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)

问题:原方程的近似解和哪个函数的零点是等价的?

师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。

生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.

(四)、归纳整理,整体认识

在师生的互动中,让学生了解或体会下列问题:

(1)本节我们学过哪些知识内容?

(2)你认为学习“二分法”有什么意义?

(3)在本节课的学习过程中,还有哪些不明白的地方?

(五)、布置作业

P92习题3.1A组第四题,第五题。

高一数学教案万能模板下载篇3

学习重点:了解弧度制,并能进行弧度与角度的换算

学习难点:弧度的概念及其与角度的关系。

学习目标

①了解弧度制,能进行弧度与角度的换算。

②认识弧长公式,能进行简单应用。对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。

③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题。

教学过程

一、自主学习

1、长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。这种度量角的单位制称为。

2、正角的弧度数是数,负角的弧度数是数,零角的弧度数是。

3、角的弧度数的绝对值。(为弧长,为半径)

4:完成特殊角的度数与弧度数的对应表。

角度030456090120

弧度

角度135150180210225240

弧度

角度270300315330360

弧度

5、扇形面积公式:。

二、师生互动

例1把化成弧度。

变式:把化成度。

小结:在具体运算时,弧度二字和单位符号rad可省略,如:3表示3rad,sin表示rad角的正弦。

例2用弧度制表示:

(1)终边在轴上的角的集合;

(2)终边在轴上的角的集合。

变式:终边在坐标轴上的角的集合。

例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。

三、巩固练习

1、若=—3,则角的终边在()。

A、第一象限B、第二象限

C、第三象限D、第四象限

2、半径为2的圆的圆心角所对弧长为6,则其圆心角为。

四、课后反思

五、课后巩固练习

1、用弧度制表示终边在下列位置的角的集合:

(1)直线y=x;(2)第二象限。

2、圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数,并化为度表示。

高一数学教案万能模板下载篇4

经典例题

已知关于的方程的实数解在区间,求的取值范围。

反思提炼:1.常见的四种指数方程的一般解法

(1)方程的解法:

(2)方程的解法:

(3)方程的解法:

(4)方程的解法:

2.常见的三种对数方程的一般解法

(1)方程的解法:

(2)方程的解法:

(3)方程的解法:

3.方程与函数之间的转化。

4.通过数形结合解决方程有无根的问题。

课后作业:

1.对正整数n,设曲线在x=2处的切线与轴交点的纵坐标为,则数列的前n项和的公式是

[答案]2n+1-2

[解析]∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

f′(2)=-n2n-1-2n=(-n-2)2n-1.

在点x=2处点的纵坐标为=-2n.

∴切线方程为+2n=(-n-2)2n-1(x-2).

令x=0得,=(n+1)2n,

∴an=(n+1)2n,

∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.

2.在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交轴于点M,过点P作的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________

解析:设则,过点P作的垂线

,所以,t在上单调增,在单调减,。

高一数学教案万能模板下载篇5

一、教材分析

本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

(三)高中用导数工具研究函数的单调性和最值。

1、有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2、不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。

1、知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2、过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

3、情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2、教学难点:

第一:从实际问题中提炼出抽象的概念;

第二:符号“y=f(x)”的含义的理解。

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1、教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2、学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案万能模板下载篇6

学习目标

1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质

2、掌握标准方程中的几何意义

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

一、预习检查

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

二、问题探究

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、

例3(理)求离心率为,且过点的双曲线标准方程、

三、思维训练

1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、

四、知识巩固

1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、

2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、

3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、

高一数学教案万能模板下载篇7

教学目标

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理垂直的问题;

4.掌握向量垂直的条件.

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学过程

1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).

并规定0向量与任何向量的数量积为0.

×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的数量积与实数乘向量的积有什么区别?

(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.

(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.

(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.

高一数学教案万能模板下载篇8

教学目标

1、知识与技能

(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

(2)理解任意角的三角函数不同的定义方法;

(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

(4)掌握并能初步运用公式;

(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.

2、过程与方法

初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.

3、情态与价值

任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.

本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.

教学重难点

重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.

高一数学教案万能模板下载篇9

一、教学目标

1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

二、教学重难点

重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

难点:找对题目中的数量关系从而列出一元二次方程。

三、教学过程

(一)导入新课

师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?

生:老师,这是雷锋叔叔。

师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?

生:是的老师。

师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?

生:想。

师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学一元二次方程。

(二)新课教学

师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

(下去巡视)

(三)小结作业

师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

四、板书设计

五、教学反思

高一数学教案万能模板下载篇10

一、教材分析

本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

(三)高中用导数工具研究函数的单调性和最值。

1.有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2.不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

1.知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2.过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

3.情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2.教学难点:

第一:从实际问题中提炼出抽象的概念;

第二:符号“y=f(x)”的含义的理解.

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1.教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2.学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案万能模板下载篇11

一元二次不等式的解法

教学目标

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以转化为一元一次不等式组;

(3)了解简单的分式不等式的解法;

(4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;

(5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;

(6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

(7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.

教学重点:一元二次不等式的解法;

教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.

教与学过程设计

第一课时

Ⅰ.设置情境

问题:

①解方程

②作函数 的图像

③解不等式

【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?

【回答】函数图像与x轴的交点横坐标为方程的根,不等式 的解集为函数图像落在x轴上方部分对应的横坐标。能。

通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?

Ⅱ.探索与研究

我们现在就结合不等式 的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出 的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)

【答】方程 的解集为

不等式 的解集为

【置疑】哪位同学还能写出 的解法?(请一程度差的同学回答)

【答】不等式 的解集为

我们通过二次函数 的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题 的解集,还求出了 的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。

下面我们再对一般的一元二次不等式 与 来进行讨论。为简便起见,暂只考虑 的情形。请同学们思考下列问题:

如果相应的一元二次方程 分别有两实根、惟一实根,无实根的话,其对应的二次函数 的图像与x轴的位置关系如何?(提问程度较好的学生)

【答】二次函数 的图像开口向上且分别与x轴交于两点,一点及无交点。

现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

【答】 的解集依次是

的解集依次是

它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数 的图像。

课本第19页上的例1.例2.例3.它们均是求解二次项系数 的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

(教师巡视,重点关注程度稍差的同学。)

Ⅲ.演练反馈

1.解下列不等式:

(1) (2)

(3) (4)

2.若代数式 的值恒取非负实数,则实数x的取值范围是 。

3.解不等式

(1) (2)

参考答案:

1.(1) ;(2) ;(3) ;(4)R

2.

3.(1)

(2)当 或 时, ,当 时,

当 或 时, 。

Ⅳ.总结提炼

这节课我们学习了二次项系数 的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。

(五)、课时作业

(P20.练习等3、4两题)

(六)、板书设计

第二课时

Ⅰ.设置情境

(通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)

上节课我们只讨论了二次项系数 的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数 的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?

Ⅱ.探索研究

(学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)

生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数 的一元二次不等式的解集.

生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.

师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.

(待学生阅读完毕,教师再简要讲解一遍.)

[知识运用与解题研究]

由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为 的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求

解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)

(1) (2)

(分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)

训练二 可化为一元一次不等式组来求解的不等式.

目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如 (或 )的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式 求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)

【答】因为满足不等式组 或 的x都能使原不等式 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.

这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).

(1) [P20练习中第1大题]

(2) [P20练习中第1大题]

(3) [P20练习中第2大题]

(老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).

例5 解不等式

因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解 (或 )之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。

解:(略)

现在请同学们完成课本P21练习中第3、4两大题。

(等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)

[训练三]用“符号法则”解不等式的复式训练。

(通过多媒体或其他载体给出下列各题)

1.不等式 与 的解集相同此说法对吗?为什么[补充]

2.解下列不等式:

(1) [课本P22第8大题(2)小题]

(2)   [补充]

(3) [课本P43第4大题(1)小题]

(4) [课本P43第5大题(1)小题]

(5) [补充]

(每题均先由学生说出解题思路,教师扼要板书求解过程)

参考答案:

1.不对。同 时前者无意义而后者却能成立,所以它们的解集是不同的。

2.(1)

(2)原不等式可化为: ,即

解集为 。

(3)原不等式可化为

解集为

(4)原不等式可化为 或

解集为

(5)原不等式可化为: 或 解集为

Ⅲ.总结提炼

这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。

(五)布置作业

(P22.2(2)、(4);4;5;6。)

(六)板书设计

高一数学教案万能模板下载篇12

一、三维目标:

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

二、学习重、难点:

重点:函数的奇偶性的概念。

难点:函数奇偶性的判断。

三、学法指导:

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

四、知识链接:

1.复习在初中学习的轴对称图形和中心对称图形的定义:

2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。

高一数学教案万能模板下载篇13

教学类型:探究研究型

设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.

教学过程:

一、片头

内容:现在让我们一起来学习《集合的运算——自己探索也能发现的&39;数学规律(第二讲)》。

二、正文讲解

1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”

上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?

那么,这个规律是偶然的,还是一个恒等式呢?

2.规律的验证:

试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用

3.抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。

而这个规律就是180年前的英国数学家德摩根发现的。

为了纪念他,我们将它称为德摩根律。

原来我们通过自己的探索也能发现这么伟大的数学规律。

4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算

三、结尾

通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。

希望你在今后的学习中,勇于探索,发现更多有趣的规律。

高一数学教案万能模板下载篇14

一、教学过程

1.复习

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=x3的反函数。

2.新课

先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象:

教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

生2:这是y=x3的反函数y=的图象。

师:对,但是怎么会得到这个图象,请大家讨论。

(学生展开讨论,但找不出原因。)

师:我们请生1再给大家演示一下,大家帮他找找原因。

(生1将他的制作过程重新重复了一次。)

生3:问题出在他选择的次序不对。

师:哪个次序?

生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。

师:是这样吗?我们请生1再做一次。

(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)

师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?

(学生再次陷入思考,一会儿有学生举手。)

师:我们请生4来告诉大家。

生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。

师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的关系,同学们能不能看出这两个函数的图象有什么样的关系?

(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)

师:怎么由y=x3的图象得到y=的图象?

生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。

师:将横坐标与纵坐标互换?怎么换?

(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。)

师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?

(学生重新开始观察这两个函数的图象,一会儿有学生举手。)

生6:我发现这两个图象应是关于某条直线对称。

师:能说说是关于哪条直线对称吗?

生6:我还没找出来。

(接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)

学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。

生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。

师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。

(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)

教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,②也不是函数的图象。

最后教师与学生一起总结:

点(x,y)与点(y,x)关于直线y=x对称;

函数及其反函数的图象关于直线y=x对称。

二、反思与点评

1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。

2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。

计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。

在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。

当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。

3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。

高一数学教案万能模板下载篇15

教学准备

教学目标

知识目标

等差数列定义等差数列通项公式

能力目标

掌握等差

数列定义等差数列通项公式

情感目标

培养学生的观察、推理、归纳能力

教学重难点

教学重点

等差数列的概念的理解与掌握

等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用

教学过程

由__《红高粱》主题曲“酒神曲”引入等差数列定义

问题:多媒体演示,观察——发现

一、等差数列定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。

例1:观察下面数列是否是等差数列:…。

二、等差数列通项公式:

已知等差数列{an}的首项是a1,公差是d。

则由定义可得:

a2—a1=d

a3—a2=d

a4—a3=d

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。

分析:知道a1,d,求an。代入通项公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差数列10,8,6,4…的第20项。

分析:根据a1=10,d=—2,先求出通项公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。

分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。

解:由题意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

练习

1。判断下列数列是否为等差数列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于()

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在数列{an}中a1=1,an=an+1+4,则a10=。

提示:d=an+1—an=—4

教师继续提出问题

已知数列{an}前n项和为……