高一数学教案模版
好的教案应该包括合理的教学过程,包括导入新课、讲授新课、巩固练习、课堂小结、布置作业等环节。优秀的高一数学教案模版是什么样的?下面给大家带来高一数学教案模版,供大家参考。
高一数学教案模版篇1
一、教学目标
1、知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路
(一)创设情景,揭示课题
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本P8,习题1.1A组第1题。
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
高一数学教案模版篇2
初中数学知识所复习的内容面广量大,知识点多,要想在短暂的时间内全面复习初中所学的数学知识,形成基本技能,提高解题技巧、解题能力,并非易事。而且今年为了减轻学生的课业负担,要求学校停止二课和晚自习,这样更减少了复习是家时间。如何提高复习的效率和质量,成为了我们初三数学老师关心的问题。为此,通过我们三人的研究,制定了切实可行的复习计划,能让复习有条不紊地进行下去,起到事半功倍的效果。
第一轮以知识立意,突出“基础性”,追求数学内容的本质理解,全面梳理知识,侧重双基(基础知识、基本技能),所选素材难度以中档以下为主,时间为2月中旬到4月中旬,约两月时间;
应该注意的几个问题:
(1)必须扎扎实实地夯实基础。
(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。
(3)不搞题海战术,精讲精练,举一反三、触类旁通。
第二轮以能力立意,突出“发展性”,追求数学素养的全面提升,侧重数学思想方法、数学基本活动经验,适当加强综合,所选题难度以中档为主,时间为4月中旬至5月下旬,约一个月时间。应该注意的几个问题:
(1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。
(2)专题的选择要准、安排时间要合理。
第三轮以状态为立意,突出“综合性”,追求数学水平的有效发挥,侧重培养学生应试技能,时间约20天。
第三轮复习应该注意的几个问题:
(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。
(2)模拟题的设计要有梯度,立足中考又要高于中考。
(3)批阅要及时,趁热打铁,切忌连考两份。
(4)评分要狠。可得可不得的分不得,答案错了的题尽量不得分,让苛刻的评分教育学生,既然会就不要失分。
(5)归纳学生知识的遗漏点。为查漏补缺积累素材。
(6)选准要讲的题,要少、要精、要有很强的针对性。
(7)留给学生一定的纠错和消化时间。教师讲过的内容,学生要整理下来;教师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。教师要充分利用这段时间,解决个别学生的个别问题。
(8)适当的“解放”学生,特别是在时间安排上。经过一段时间的考、考、考,几乎所有的学生心身都会感到疲劳,如果把这种疲劳的状态带进中考考场,那肯定是个较差的结果。但要注意,解放不是放松,必须保证学生有个适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的状态。
高一数学教案模版篇3
一、教材分析
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
高一数学教案模版篇4
一、说教材
(一)说教材的地位和作用
在此之前,学生们已经学习了公民的政治生活和为人民服务的政府两个单元,本单元在内容上是前两个单元的延伸和深化,也是政治生活的核心内容。本框题的学习是为后一框题作铺垫,是以后政治学习中不可缺少的部分,也是往年高考的必考内容。
(二)说教学目标
1、知识目标:知道人民代表大会是我国的国家权力机关;了解人民代表大会的主要职权;了解人民代表的法律地位、权力和义务。
2、能力目标:提高运用马克思主义立场、观点、方法分析政治生活的能力;增强收集材料的能力,能够从报刊、书籍等渠道查阅、收集人民代表大会有关资料用于学习。
依据:美国心理学家加涅"为学习设计教学"的主张(学习放在一定的情境中进行);美国布鲁纳"发现法"(重视学生的学习信心和主动精神)。
3、情感、态度与价值观目标:培养学生的政治素养、合作学习的团队精神。
依据:学习的迁移性原则;皮亚杰发展心理学理论,主张内外因相互作用的发展观。
(三)说教学的重、难点
教学重点、难点:人民代表大会及人民代表大会的职权。
依据:本节内容不仅是高考的重点,也是考试易错点。
(四)说教学模式:"设疑—探究—归纳—提高"。
依据:皮亚杰建构主义教学理论,认为学生是在同周围环境的相互作用的过程中,建起关于外部世界的知识,从而使自身认识结构得到发展;美国布鲁纳动机性原则,教师要充分注重学生的内在动机,这是教学成败异常重要的因素。
二、说教法
政治是一门培养人的实践能力的重要学科。因此,在教学过程中,不仅要使学生"知其然",还要使学生"知其所以然"。我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。
考虑到我校高一年级学生的现状,我主要采取学生活动的教学方法,让学生真正的参与活动,而且在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的行动结合起来,发展思辩能力,注重学生的心理状况。同时,由于教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到的教学效果。同时也体现了课改的精神。基于本框题的特点,我主要采用了以下的教学方法:
1、演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2、探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。
3、讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。
三、说学法
我们常说:"现代的文盲不是不会字的人,而是没有掌握学习方法的人",因而,我在教学过程中特别重视学法的指导。让学生从机械的"学、答"向"学、问"转变,从"学会"向"会学"转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、自主探究法、总结反思法。
四、说教学过程(说下教学流程,如:由人大图片导入新课——学生探究和分组讨论:如,人民是怎样行使国家权力?我国的国家机关是怎样构成的?——教师点评—小结)
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的积极性、主动性。安排如下:
(一)创设情景,激趣引入
(二)围绕中心,突出重点
(三)层层深入,突破难点
(四)归纳小结,交流感悟
(五)课后拓展,注重实践
1、导入新课:(2分钟)
课件展示出:20__年3月的相关图片。 教案 导语设计的依据:以图片和视频提高学生的兴趣,使学生明确本节课要讲述的内容,以激发起学生的求知欲望。这是政治教学非常重要的一个环节。
2、讲授新课:(讲授15分钟,学生合作探究15分钟)
(1)人民怎样当家作主(如人民—代表—各级人大—组成国家权力机关—产生行政,审判机关或决定国家重大事务)从这个示意图可看出,我国人民行使国家权力的机关是什么?(提问下)
通过学生对学过知识的复习,让学生同桌讨论,总结人民当家作主的过程。
以这样的方式既可以考察学生对学过知识的掌握,又可以引导学生进入新课。通过同桌之间讨论,提高学生参与课堂能力及总结能力。
(2)肩负着人民重托(结合他的产生,他的地位,有那些权利,对人大代表是一种责任的理解,什么样的人可当选人大代表?)也可模议:假如我是人大代表?
以人大代表代表人民帮助人民解决问题的材料,指导学生总结人大代表和人民的关系及权力和职责。
以给出材料的方式,启发学生独立思维的能力,并能联系实际,灵活运用,提高学生的分析能力。
(3)人民行使国家权力的机关(可结合今年人大会议议程分析出全国人大的职权?全国人大与其常委会的关系?)通过学生自我阅读教材后,小组合作,共同探究人民代表大会的性质、地位、职权及常设机关,重点讨论其职权。讨论过程中教师引导学生并,展示所收集的与人民代表大会的职权相关的图片,和学生一起享受讨论成果。
①通过阅读,培养学生良好的自主学习习惯;同时以问题教法开始,由易到难设计题目,符合学生认知特点和认知规律。
②经过讨论交流,培养学生与他人合作学习和沟通的良好品质;学生的广泛参与也充分体现学生的主体地位。同时,也锻炼了学生综合能力、表达能力。
③以图片展示的形式对学生感观上的刺激,可以使学生对知识的认识更加深刻。
3、课堂小结,强化认识。(2—3分钟)
课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解政治理论在实际生活中的应用,并且逐渐地培养学生具有良好的个性。
4、板书设计
5、布置作业
针对当前的素质教育理念,我进行了分层训练,这样做既可以使学生掌握基础知识,又可以使学有余力的学生有所提高,从而达到拔尖和"减负"的目的。
五、效果评估
这节课教学效果好,我通过创设情境作为引线,充分调动学生的学习积极性和主动性,鼓励学生主动参与,并通过师生互动,生生互动使学生在体验中感悟人民代表大会及其职权,从而使学生在学习知识的基础上使情感得以升华,提高学生参与政治生活的积极性,也有助于学生树立更强的社会主任翁的意识。
高一数学教案模版篇5
学习重点:了解弧度制,并能进行弧度与角度的换算
学习难点:弧度的概念及其与角度的关系。
学习目标
①了解弧度制,能进行弧度与角度的换算。
②认识弧长公式,能进行简单应用。对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。
③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题。
教学过程
一、自主学习
1、长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。这种度量角的单位制称为。
2、正角的弧度数是数,负角的弧度数是数,零角的弧度数是。
3、角的弧度数的绝对值。(为弧长,为半径)
4:完成特殊角的度数与弧度数的对应表。
角度030456090120
弧度
角度135150180210225240
弧度
角度270300315330360
弧度
5、扇形面积公式:。
二、师生互动
例1把化成弧度。
变式:把化成度。
小结:在具体运算时,弧度二字和单位符号rad可省略,如:3表示3rad,sin表示rad角的正弦。
例2用弧度制表示:
(1)终边在轴上的角的集合;
(2)终边在轴上的角的集合。
变式:终边在坐标轴上的角的集合。
例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。
三、巩固练习
1、若=—3,则角的终边在()。
A、第一象限B、第二象限
C、第三象限D、第四象限
2、半径为2的圆的圆心角所对弧长为6,则其圆心角为。
四、课后反思
五、课后巩固练习
1、用弧度制表示终边在下列位置的角的集合:
(1)直线y=x;(2)第二象限。
2、圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数,并化为度表示。
高一数学教案模版篇6
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.复习在初中学习的轴对称图形和中心对称图形的定义:
2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。
高一数学教案模版篇7
高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,
集合(一)教学案例。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄國聖彼得堡,父母親是丹__人,父親出生於丹__首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学__们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神__症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。
实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:
实数正实数负实数零
4、以下由学生完成:(1)、把下列各数填入相应的圈内
0、、2.5、、、-6、、8%、19
整数集合分数集合无理数集合
(2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:{}
整数集合:{}
正实数集:{}
无理数集:{}
3.解不等式组(1)2x-3〈5
4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)2007年本省高考考试科目;(8)2008年奥运会的球类项目,
《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1){1,2,2,3}是含有1个1、2个2、1个3的集合吗?(2)的科学家能构成一个集合吗?(3){a,b,c,d}与{b,c,d,a}是否表同一个集合?通过师生共同探讨得出下面结论:通过师生共同探讨得出结论:[集合中的元素的性质]确定性:集合中的元素必须是确定的。集合的元素的特点互异性:集合中的元素必须是互异的。无序性:集合中的元素是无先后顺序的。组成集合的元素可以是:数、图、人、事物等。[常用数集的表示](1)自然数集:用N表示(2)正整数集:用N﹡或N+表示(3)整数集:用Z表示(4)有理数集:用Q表示(5)实数集:用R表示(正实数集用R__或R+表示)四、[四、[互动参与]例1下面的各组对象能否构成集合是()(A)所有的好人(B)小于2004的实数(C)和2004非常接近的数(D)方程x2-3x+2=0的根例2用符号填空(1)3.14Q(2)πQ(3)0N+(4)0N
32(5)(-2)0N__(6)Q
3232(7)Z(8)—R
五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《高一数学》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,则xN()(3)若xQ,则xR()(4)若xN,则xN+()
常用数集属于a∈AN、N__(或N+)、Z、Q、R。集合集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA
本节课设计的目的:通过创设情境激发学生的学习兴趣,课前预习培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。
高一数学教案模版篇8
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节教学内容师生互动设计意图
提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={x|x是有理数},
B={x|x是无理数},
C={x|x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={x|x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.
例2设集合A={x|–1
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={x|–1
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质①A∪A=A,②A∪=A,
③A∪B=B∪A,
④∪B,∪B.
老师要求学生对性质进行合理解释.培养学生数学思维能力.
形成概念自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B={x|x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.
应用举例例1(1)A={2,4,6,8,10},
B={3,5,8,12},C={8}.
(2)新华中学开运动会,设
A={x|x是新华中学高一年级参加百米赛跑的同学},
B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.
例1解:(1)∵A∩B={8},
∴A∩B=C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={x|x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};
(2)直线l1,l2平行可表示为
L1∩L2=;
(3)直线l1,l2重合可表示为
L1∩L2=L1=L2.提升学生的动手实践能力.
归纳总结并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性质:①A∩A=A,A∪A=A,
②A∩=,A∪=A,
③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结
老师点评、阐述归纳知识、构建知识网络
课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华
备选例题
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,
∴a–1=–2或a+1=–2,
解得a=–1或a=–3,
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
当a=–3时,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,
又∵a2+1≥1,∴a2–3=–2,
解得a=±1,
当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={x|–1 (1)若A∩B=,求a的取值范围; (2)若A∪B={x|x<1},求a的取值范围. 【解析】(1)如下图所示:A={x|–1 ∴数轴上点x=a在x=–1左侧. ∴a≤–1. (2)如右图所示:A={x|–1 ∴数轴上点x=a在x=–1和x=1之间. ∴–1 例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何实数时,A∩B与A∩C=同时成立? 【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}. 由A∩B和A∩C=同时成立可知,3是方程x2–ax+a2–19=0的解.将3代入方程得a2–3a–10=0,解得a=5或a=–2. 当a=5时,A={x|x2–5x+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合. 当a=–2时,A={x|x2+2x–15=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2. 例4设集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B. 【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5. 当x=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去. 当x=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}. 当x=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去. 综上所述,x=–3且A∪B={–8,–4,4,–7,9}. 一、教学目标 1.掌握二次根式的性质 2.能够利用二次根式的性质化简二次根式 3.通过本节的学习渗透分类讨论的数学思想和方法 二、教学设计 对比、归纳、总结 三、重点和难点 1.重点:理解并掌握二次根式的性质 2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式. 四、课时安排 1课时 五、教B具学具准备 投影仪、胶片、多媒体 六、师生互动活动设计 复习对比,归纳整理,应用提高,以学生活动为主 本学期,我担任高一(25)、(26)、(27)、(28)四个班的化学教育教学工作。 一、指导思想 认真学习教育部《基础教育课程改革纲要》和《普通高中研究性学习实施建议》,认真学习《普通高中化学课程标准》,明确当前基础教育课程改革的方向,深刻理解课程改革的理念,全面推进课程改革的进行。 在教学中,贯彻基础教育课程改革的改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程;改变课程内容&39;难、繁、偏、旧&39;和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能;改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力的课程观。 二、教学要求 1、认真研究当前教育改革发展趋势,转变传统教学观念,注重学生能力培养,以培养学生创新意识和综合能力为重点,重视科学态度和科学方法的教育,寓思想教育与课堂教学之中,促进学生健康发展,深化教育改革。 2、加强教学研究,提高教学质量。提倡以科研带教学,以教学促科研,使教学工作课题化。教师要努力提高教科研的意识和能力,积极探讨科学合理、适应性强的实验方案,改革课堂教学方法,积极进行研究性学习的探索,不断提高教学水平和专业知识水平,开拓新的课堂教学模式。在备课活动中,要把课堂教学改革,德育教育放在首位。 在教学目标、方法、内容的确定、作业的布置与批改、单元的测试与评估、课内外辅导活动中要从有利于培养学生高尚道德情操,创新精神和实践能力去思考设计。 3、做好调查研究,真正了解高一文、理科学生的实际情况。要认真研究学法,加强对学生学习方法的指导,加强分类指导,正确处理对不同类学校和不同类学生的教学要求,注重提高学生学习化学的兴趣。在教学中,努力发挥学生的主体作用和教师的指导作用,提高教学效率。提倡向40分钟要质量,反对加班加点磨学生的低劣教学方法。 4、注重知识的落实,加强双基教学,加强平时的复习巩固,加强平时考查,通过随堂复习、单元复习和阶段复习及不同层次的练习等使学生所学知识得以及时巩固和逐步系统化,在能力上得到提高。 5、加强实验研究,重视实验教学,注重教师实验基本功培训,倡导改革实验教学模式,增加学生动手机会,培养学生实践能力。 6、要发挥群体优势,发挥教研备课组的作用,依靠集体力量,在共同研究的基础上设计出丰富多彩的教学活动。 本学期我担任高一的英语教学工作,任教班级分别为高一440班和438班。为了更好的进行教学,明确教学任务,特制定此教学计划,以促进教学工作。以教学大纲,新课改的具体要求为依据,根据本届高一学生的具体学情,制定全面的、系统的、针对性强的教学计划,从高一抓起,充分提高我校学生的英语基础水平。认真研读课本,谦虚而积极地向优秀的同行学习,收集相关资料信息,密切关注高考动态对本届高一学生发展的影响,从而作出最快的调整,使教学工作不偏离方向,有效提高教学质量。联系学生的实际情况,充分调动学生的学习积极性和自主性,尽努力让学生主导课堂,教师引导课堂,双管齐下,扎扎实实学好基础,并提高学生的综合素质和解题技巧,以适应新的形势和要求。 一、学生现状分析 这2个班级是普通班,两个班级的平均水平相差不大,底子薄弱的同学比例大。不少同学的学习态度还没转变,学习方法也须慢慢纠正。学生中有这样一种顽劣思想,"现在离高考还早着呢,玩得开心最重要,以后大不了再临时抱佛脚"。学生上课效率低,作业马虎甚至不交,课外时间全部放在休闲游戏上,上课睡觉或者无所事事的现象时有发生。还有一些学生则是由于缺乏坚持不懈的毅力,不喜欢背诵、记忆,只满足于课堂上听听课,课后没有复习、课前没有预习,导致英语成绩提高缓慢。 二、教学措施 1.教学目标:高一年级是高中的重要阶段,又是高中三年学习打好基础的关键时期。因此,让学生在高一阶段扎实地掌握基础对其今后学业发展极其重要。在本学期内,我期望达到以下目标:巩固扩大基础知识,培养口头和书面初步运用英语进行交际的能力,侧重培养阅读能力,发展智力,培养自学能力。协助学生通过学业水平测试。 2.教学方法与措施 (1)帮助学生养成良好的学习习惯,指导他们掌握有效的学习方法。坚持每天朗读,学会背诵的有效方法;利用每天的零碎时间反复多记忆单词,学会记忆单词的多种方法;学会观察语言现象,总结语言规律(如通过例句总结出词的词性,用法等);养成良好的作业习惯,掌握各种解题技巧;坚持预习,锻炼自学,积极思考,大胆质疑;学会记笔记和整理错题。 (2)强化词汇、阅读训练。对于词汇教学,运用词汇联想的记忆方法,拓展学习知识面。同时坚持不懈地积累词汇量,不断反复,及时巩固。本学期继续抓住统编教材的词汇,同时适当扩大英文报刊的阅读量,以扩大词汇量、增强阅读能力。短文阅读是吸收信息、学习语言、提高水平的最有效途径,因此,提高学生的阅读理解能力是教学的重要目标之一。本学期将有计划地坚持每周补充一份周报,包含单项选择,完型填空,阅读理解和改错等内容以辅助教学,并且除了配套的练习之外,每周有效选择课外阅读文章两篇,让学生在广泛阅读中提高阅读理解能力。 (3)坚持对听力训练、写作训练常抓不懈,对学生平时的学习情况做好记录与反馈。 (4)适当地调整课堂,增加提问方式,适量地让学生听英文歌曲或简单有趣的英语小故事,以提高学生的学习兴趣。改变传统教学模式,尽量做到让学生教学生,更多地把课堂时间和空间留给学生。 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数 的图象 2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求 等函数的周期 4 理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”, 周期的求解。 三、学法指导 1、 是周期函数是指对定义域中所有 都有____,即 应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度 与时间 之间的函数关系如图所示 (1)求该函数的周期; (2)求 时钟摆的高度。 例2、求下列函数的周期。 (1) (2) 总结:(1)函数 (其中 均为常数,且___的周期T= 。 (2)函数 (其中 均为常数,且__的周期T= 。 例3、求证:____的周期为 __。 例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,且 总结:函数 (其中 均为常数,且___的周期T= 。 例5、(1)求 的周期。 (2)已知 满足 ,求证: 是周期函数 课后思考:能否利用单位圆作函数 的图象。 六、作业: 七、自主体验与运用 1、函数 的周期为 ( ) A、 B、 C、 D、 2、函数 的最小正周期是 ( ) A、 B、 C、 D、 3、函数 的最小正周期是 ( ) A、 B、 C、 D、 4、函数 的周期是 ( ) A、 B、 C、 D、 5、设 是定义域为R,最小正周期为 的函数, 若 ,则 的值等于 ( ) A、1 B、 C、0 D、 6、函数 的最小正周期是 ,则 7、已知函数 的最小正周期不大于2,则正整数的最小值是 8、求函数 的最小正周期为T,且 ,则正整数的值是 9、已知函数 是周期为6的奇函数,且 则 10、若函数 ,则 11、用周期的定义分析 的周期。 12、已知函数 ,如果使 的周期在 内,求正整数 的值 13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的 函数关系如图所示: (1) 求该函数的周期; (2) 求 时,该质点离开平衡位置的位移。 14、已知 是定义在R上的函数,且对任意 有 成立, (1) 证明: 是周期函数; (2) 若 求 的值。 两角差的余弦公式 【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案 2、有余力的学生可在完成探究案中的部分内容。 【学习目标】 知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。 过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。 情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。 【重点】通过探索得到两角差的余弦公式以及公式的灵活运用 【难点】两角差余弦公式的推导过程 预习自学案 一、知识链接 1. 写出 的三角函数线 : 2. 向量 , 的数量积, ①定义: ②坐标运算法则: 3. , ,那么 是否等于 呢? 下面我们就探讨两角差的余弦公式 二、教材导读 1.、两角差的余弦公式的推导思路 如图,建立单位圆O (1)利用单位圆上的三角函数线 设 则 又OM=OB+BM =OB+CP =OA_____ +AP_____ = 从而得到两角差的余弦公式: ____________________________________ (2)利用两点间距离公式 如图,角 的终边与单位圆交于A( ) 角 的终边与单位圆交于B( ) 角 的终边与单位圆交于P( ) 点T( ) AB与PT关系如何? 从而得到两角差的余弦公式: ____________________________________ (3) 利用平面向量的知识 用 表示向量 , =( , ) =( , ) 则 . = 设 与 的夹角为 ①当 时: = 从而得出 ②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + = 此时 = 从而得出 2、两角差的余弦公式 ____________________________ 三、预习检测 1. 利用余弦公式计算 的值. 2. 怎样求 的值 你的疑惑是什么? ________________________________________________________ ______________________________________________________ 探究案 例1. 利用差角余弦公式求 的值. 例2.已知 , 是第三象限角,求 的值. 训练案 一、 基础训练题 1、 2、 ¬¬¬¬¬¬¬¬¬¬¬ 3、 二、综合题 -------------------------------------------------- 【内容与解析】 本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。 【教学目标与解析】 1、教学目标 (1)理解函数的概念; (2)了解区间的概念; 2、目标解析 (1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解区间的概念就是指能够体会用区间表示数集的意义和作用; 【问题诊断分析】 在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。 【教学过程】 问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的`高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. 1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示? 1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么? 设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。 问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。 问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。 设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。 问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义? 4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称? 4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R? 4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么? 【例题】: 例1求下列函数的定义域 分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合! 例2已知函数 分析:理解函数f(x)的意义 例3下列函数中哪个与函数相等? 例4在下列各组函数中与是否相等?为什么? 分析: (1)两个函数相等,要求定义域和对应关系都一致; (2)用x还是用其它字母来表示自变量对函数实质而言没有影响. 【课堂目标检1测】 教科书第19页1、2. 【课堂小结】 1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值; 2、理解区间是表示数集的一种方法,会把不等式转化为区间。 一、教材分析 本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。 二、学生学习情况分析 函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段: (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数; (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数; (三)高中用导数工具研究函数的单调性和最值。 1、有利条件 现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。 初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。 2、不利条件 用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。 三、教学目标分析 课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。 1、知识与能力目标: ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性; ⑵理解函数的三要素的含义及其相互关系; ⑶会求简单函数的定义域和值域 2、过程与方法目标: ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型; ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。 3、情感、态度与价值观目标: 感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。 四、教学重点、难点分析 1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数; 重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。 突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。 2、教学难点: 第一:从实际问题中提炼出抽象的概念; 第二:符号“y=f(x)”的含义的理解。 难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。 突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。 五、教法与学法分析 1、教法分析 本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。 2、学法分析 在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。 一、教材分析 (一)教材的地位和作用 “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。 (二)教学内容 本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。 二、教学目标分析 根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为: 知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。 能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。 情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。 三、重难点分析 一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。 要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。高一数学教案模版篇9
高一数学教案模版篇10
高一数学教案模版篇11
高一数学教案模版篇12
高一数学教案模版篇13
高一数学教案模版篇14
高一数学教案模版篇15