学生中考数学必修知识点总结整理
很多同学复习的时候抓不住重点,要想学习高效,必须得知道哪些知识是重点,而不是盲目复习。下面是小编给大家整理的学生中考数学必修知识点总结整理,仅供参考希望能帮助到大家。
学生中考数学必修知识点总结整理篇1
第一章实数
一、重要概念
1.数的分类及概念数系表:
说明:"分类"的原则:1)相称(不重、不漏) 2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义("三要素")
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数-自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号"││"是"非负数"的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
二、实数的运算
1.运算法则(加、减、乘、除、乘方、开方)
2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3.运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"
到"右"(如5÷ ×5);C.(有括号时)由"小"到"中"到"大"。
三、应用举例(略)
附:典型例题
1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0-与"平方根"的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴ ( -幂,乘方运算)
① a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)
⑵零指数:=1(a≠0)
负整指数:=1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质:= (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法:(1≤a<10,n是整数=
三、应用举例(略)
四、数式综合运算(略)
第三章统计初步
★重点★
☆内容提要☆
一、重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、计算方法
1.样本平均数:⑴ ;⑵若,,…,,则(a-常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若, ,…, ,则(a-接近、 、…、的平均数的较"整"的常数);若、 、…、较"小"较"整",则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、应用举例(略)
第四章直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从"图形"、"表示法"、"界限"、"端点个数"、"基本性质"等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用"线段的基本性质"论证"三角形两边之和大于第三边")
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成
13.公理、定理
14.逆命题
二、三角形
分类:⑴按边分;
⑵按角分
1.定义(包括内、外角)
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,
3.三角形的主要线段
讨论:①定义②线的交点-三角形的×心③性质
①高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线
⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法-反证法:①反设②归谬③结论
⑶证线段相等、角相等常通过证三角形全等
⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:延结法、截余法
⑹证面积关系:将面积表示出来
三、四边形
分类表:
1.一般性质(角)
⑴内角和:360°
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360°
2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
⑶判定步骤:四边形→平行四边形→矩形→正方形
┗→菱形--↑
⑷对角线的纽带作用:
3.对称图形
⑴轴对称(定义及性质);⑵中心对称(定义及性质)
4.有关定理:①平行线等分线段定理及其推论1、2
②三角形、梯形的中位线定理
③平行线间的距离处处相等。(如,找下图中面积相等的三角形)
5.重要辅助线:①常连结四边形的对角线;②梯形中常"平移一腰"、"平移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。
6.作图:任意等分线段。
四、应用举例(略)
第五章方程(组)
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)
☆内容提要☆
一、基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2.分类:
二、解方程的依据-等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、解法
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→
系数化成1→解。
2.元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法
②加减法
四、一元二次方程
1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤-推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
4.根与系数顶的关系:
逆定理:若,则以为根的一元二次方程是:。
5.常用等式:
五、可化为一元二次方程的方程
1.分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如,)
⑷验根及方法
2.无理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法
3.简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
二常用的相等关系
1.行程问题(匀速运动)
基本关系:s=vt
⑴相遇问题(同时出发):
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行:;
2.配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
三注意语言与解析式的互化
如,"多"、"少"、"增加了"、"增加为(到)"、"同时"、"扩大为(到)"、"扩大了"、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
四注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算
如,"小时""分钟"的换算;s、v、t单位的一致等。
七、应用举例(略)
第六章一元一次不等式(组)
★重点★一元一次不等式的性质、解法
☆内容提要☆
1.定义:a>b、a
2.一元一次不等式:ax>b、ax
3.一元一次不等式组:
4.不等式的性质:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac
⑷(传递性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
7.应用举例(略)
第七章相似形
★重点★相似三角形的判定和性质
☆内容提要☆
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:
注意:①定理中"对应"二字的含义;
②平行→相似(比例线段)→平行。
二、相似三角形性质
1.对应线段…;2.对应周长…;3.对应面积…。
三、相关作图
①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1."等积"变"比例","比例"找"相似"。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来
3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将"一份"看着k;对于等比问题,常用处理办法是设"公比"为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
五、应用举例(略)
第八章函数及其图象
★重点★正、反比例函数,一次、二次函数的图象和性质。
☆内容提要☆
一、平面直角坐标系
1.各象限内点的坐标的特点
2.坐标轴上点的坐标的特点
3.关于坐标轴、原点对称的点的坐标的特点
4.坐标平面内点与有序实数对的对应关系
二、函数
1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数
(定义→图象→性质)
1.正比例函数
⑴定义:y=kx(k≠0)或y/x=k。
⑵图象:直线(过原点)
⑶性质:①k>0,…②k<0,…
2.一次函数
⑴定义:y=kx+b(k≠0)
⑵图象:直线过点(0,b)-与y轴的交点和(-b/k,0)-与x轴的交点。
⑶性质:①k>0,…②k<0,…
⑷图象的四种情况:
3.二次函数
⑴定义:特殊地,都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。
⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。
4.反比例函数
⑴定义:或xy=k(k≠0)。
⑵图象:双曲线(两支)-用描点法画出。
⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法
1.用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
六、应用举例(略)
第九章解直角三角形
★重点★解直角三角形
☆内容提要☆
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
2.特殊角的三角函数值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3.互余两角的三角函数关系:sin(90°-α)=cosα;…
4.三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2.依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
四、应用举例(略)
第十章圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3."三点定圆"定理
4.垂径定理及其推论
5."等对等"定理及其推论
5.与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.三种位置及判定与性质:
2.切线的性质(重点)
3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…
4.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:
内角的一半:(右图)
(解Rt△OAM可求出相关元素, 、等)
六、一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算
七、点的轨迹
六条基本轨迹
八、有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:4、8;6、3等分
九、基本图形
十、重要辅助线
1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角
4.切点圆心莫忘连
5.两圆相切公切线(连心线)
6.两圆相交公共弦
中考数学九年级学习方法
1、科学的预习方法
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
2、科学的听课方式
听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
3、科学的记录笔记
记问题--将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
记疑点--对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错造成的,也有可能是老师讲课疏忽大意造成的,记下来后,便于课后与老师商榷。
记方法--勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
记总结--注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
中考数学九年级学习技巧
养成良好的学习数学习惯
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
学生中考数学必修知识点总结整理篇2
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.
学生中考数学必修知识点总结整理篇3
基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。
质数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。
算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。
概念
只有1和它本身两个约数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的约数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个约数外,还有其它约数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)
100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。
注:1既不是质数也不是合数。因为它的约数有且只有1这一个约数。
学生中考数学必修知识点总结整理篇4
单项式与多项式
仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。
当一个单项式的系数是1或-1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。
性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。
性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。
学生中考数学必修知识点总结整理篇5
初中数学长方形的中考知识点集锦
长方形也就是我们所说的矩形,是基础的平面图形。
长方形
有一个角是直角的平行四边形叫做长方形 (rectangle)。又叫矩形。
长方形长与宽的定义:
第一种意见:长方形长的那条边叫长,短的那条边叫宽。
第二种意见:和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的,不能绝对的说“长比宽长”,但习惯地讲,长的为长,短的为宽。
长方形的性质
①两条对角线相等;
②两条对角线互相平分;
③两组对边分别平行;
④两组对边分别相等 ;
⑤四个角都是直角;
⑥有2条对称轴(正方形有4条)。
以上的内容是长方形的性质及定义,请大家做好笔记了。
学生中考数学必修知识点总结整理篇6
一、数与式
易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!
易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解
易错点6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
三、三角形
易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。
易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。
易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。
易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。
易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。
易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。
易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。
易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。
易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。
易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。
学生中考数学必修知识点总结整理篇7
平方差公式:a^2;-b^2;=(a+b)(a-b);
完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);
立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);
完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.
其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)
例如:a^2; +4ab+4b^2; =(a+2b)^
学生中考数学必修知识点总结整理篇8
相似三角形(7个考点)
考点 1:
相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点 2:
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意: 被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点 3:
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点 4:
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点 5:
三角形的重心
考核要求:知道重心的定义并初步应用。
考点 6:
向量的有关概念
考点 7:
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
锐角三角比(2个考点)
考点 8:
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点 9:
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
二次函数(4个考点)
考点 10:
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点 11:
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点 12:
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点 13:
二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
圆的相关概念(6个考点)
考点 14:
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点 15:
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点 16:
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点 17 :
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点 18:
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点 19:
画正三、四、六边形
考核要求:能用基本作图工具,正确作出正三、四、六边形。
数据整理和概率统计(9个考点)
考点 20:
确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点 21:
事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
考点 22:
等可能试验中事件的概率问题及概率计算
考核要求:
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
考点 23:
数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点 24:
统计的'含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点 25:
平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点 26:
中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
考点 27:
频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点 28:
中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。