范文网 >资料大全 >综合资料 >《圆的面积》教学设计

《圆的面积》教学设计

对味 分享更新时间:
投诉

《圆的面积》教学设计

作为一名优秀的教育工作者,时常需要准备好教学设计,借助教学设计可以更好地组织教学活动。那要怎么写好教学设计呢?以下是小编为大家收集的《圆的面积》教学设计,希望对大家有所帮助。

《圆的面积》教学设计1

教学目标:

1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3.渗透转化的数学思想和极限思想。

教学重点:

利用圆面积计算公式正确计算圆的面积。

教学难点:

圆面积计算公式的推导。

教具准备:

等分圆教具。

学具准备:

分成十六等分的圆形纸片。

教学过程:

一.谈话导入新课

同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。

二.游戏激趣,理解圆的面积的概念。

师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?

生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的'面积。板书:圆所占平面的大小就叫做圆的面积。

师:现在大家知道男生为什么涂得慢呢?

生:男同学涂的面积大。

三.探究合作,推导圆的面积公式

1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?

生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?

2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。

3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。

四.巩固新知,实践运用

1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。

2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?

五.总结

1、这节课你们有什么收获?

2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。

《圆的面积》教学设计2

教学目标:

1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

3、通过小组会议交流,培养学生的合作精神和创新意识。

教学重点:

推导出圆的面积公式及其应用。

教学难点:

圆与转化后的图形的联系。

教具、学具:

剪刀、图片,圆片4等份……64等份的拼图对比挂图。

教学过程:

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、转化后的图形与原来的`图形面积相等吗?(板书:等积)

6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)

7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。

《圆的面积》教学设计3

一、教学目标:

1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。

3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。

二、教学重点:

圆的面积公式的推导及应用公式计算。

三、教学难点:

圆面积公式的推导。

四、教学关键:

转化前后各部分间的对应关系。

教学过程

一、导入新课:

提出问题:

在一广阔草地上,用绳子拴着一只羊,可移动的绳长是10米,这只羊可活动的范围最大是多少平方米?

请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)

思考:

要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)

生读,教师板书:圆的面积

大家会求这只羊的活动范围吗?怎么求?下面我们就探讨这个公式的推导过程,大家想知道吗?

二、探索新知:

(一)、先自学课本,小组探讨如下两个问题:(电脑出示)

1、在推导的过程中你发现圆的什么变了?(板书:形状)

2、在推导的过程中你发现圆的什么没变?(板书;面积)

(二)、探讨第一问:

A:多媒体出示16等份圆。

1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。

2、学生小组操作。

3、你会把它变成一个近似长方形吗?学生小组尝试操作。

4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。

5、学生展示操作成果。

B:多媒体出示8等份圆。

1、请同学们猜想并且讨论:如果把同样一个圆平均分成8份,象上面这样拼,得到的图形谁更接近长方形?

2、学生汇报讨论结果。

3、媒体演示8等份。

C:多媒体出示32等份

1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。

2、眼睛微闭想一想。

3、媒体演示32等份。

D:多媒体演示三幅图综合画面。

1、让学生仔细观察后问:哪一等份更接近长方形?

2、为什么,等份的份数越多就能拼出越接近的长方形。

F:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想

学生讨论。

(三)探讨第二问:

A:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?

2、长方形的面积就是谁的面积?(教师板书)

3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)

板书:长方形面积=长×宽

圆的面积=圆周长的'一半×半径

B:仔细观察多媒体演示问:

1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)

2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)

C:推导出圆的面积并且用字母表示。(教师板书)

D:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?

三:课堂练习

1、同座互增一个画好半径的圆,求其面积。

问:先要知道什么条件,再怎样求?

2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?

3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何

解决此问题?

4、根据下面条件,求出各圆的面积。

C=6。28米r=1分米d=20毫米

5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。

课堂延伸

学生讨论:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的周长与圆的周长相等吗?为什么?

练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。

四、课堂小结

通过今天的学习,同座位互相谈一谈是怎样推导出圆面积计算公式的?知道哪些条件可以求出圆的面积?

《圆的面积》教学设计4

教学内容:

义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

教学目标:

知识与技能:

让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

过程与方法:

(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

教学重点:

推导圆的'面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

教学难点:

引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

教具准备:

多媒体课件,圆片等。

教学方法:

自主探究法

教学过程:

一.以旧引新、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下三角形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

二、动手实践、探索新知

1、补充感知、理解意义

(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

(2)同学们再用手指一指自己带来的圆的面积。

(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

2、比较猜测、探明方向

(1)提问:猜猜圆面积的大小与什么有关?

(2)下面我们来动手验证一下是否与半径有关:

①你们想通过什么方法来推导圆的面积计算公式?

②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

(3)活动要求:折一折手中的圆片能折出什么图形?

(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

①圆和(近似的)长方形有什么关系?(形状变,面积相等)

②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

《圆的面积》教学设计5

课题:

“圆的面积”教学设计

教学内容:

义务教育课程标准实验教科书六年级上册第五单元“圆的面积”。

教学内容分析:

当前,“数学新课程实施应以学生数学素质的养成为核心目标,课堂教学中学经验的获得是学生数学素质养成的必要条件”已经成为大家的共识。《标准(20xx版)》的作者出:数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中透步积累的。“圆的面积”公式推导,从解决实际问题出发,引导学生用转化的方法把圆转化为长方形来计算面积。这样的过程,能够让学生深刻地体验到“化曲为直”的转化思想和“无限逼近”的极限思想。例3更是提供了一次探索问题解决方法的机会,使学生进一步提高解决问题能力。

圆的面积研究,以计算圆形草坪的面积作为情境自然引入;光盘、环岛、古建筑中的“外方内圆” “外圆内方”、土楼的占地面积、篮球场的三分线大量的生活素材,能有效激发学生的学习热情,促使学生积极主动地去探索知识。同时,通过对这些实际问题的解决,学生也能更真切地体会数学知识的广泛应用。

教学对象分析:

该节课内容是专门针对正迈入小学六年级的学生来展开的,从我多年的教学经验中可以了解到,处于该阶段的很多学生对新知识的接受程度较高,因此我认为这节课对他们来说教学难度不是很大,如果在课堂上能够紧跟着老师的教学思路一起探索、一起学习,定能有所收获。

1、学生的知识基础

该教学内容是学会计算圆的面积。在此基础上,该年级段的学生已经学习了如何辨别圆形、计算圆的周长,指导圆的半径、直径怎么表示,也明白“π”的含义以及其数值。小学六年级是小学阶段最后一年,也是他们在小学校园呆的最后一年,相比于其他低年级的小学生们,他们不仅在年龄上有所增长,而且在知识掌握程度方面也较全面,同时也更加地深入。

2、对学习该内容的困惑与迷思

学生会对“π”的来源以及它的数值具体含义了解不是很清楚,还有存在对“圆”面积公式的疑惑,它是怎样从长方形的角度推向圆的形状的。部分学生存在逻辑感不强,对推导的过程不能做到知根知底,举一反三能力较差。

教学目标:

本节课程的教学设计主要分为以下三个方面:即教学的认知目标、教学方法目标以及教学过程中的情感目标。

1、教学的认知目标

让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

2、教学方法目标

让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

3、情感目标

让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

教学重点难点:

重点:圆的面积计算公式的推导和应用。

难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

教学准备:

PPT课件、圆规、教学模具、纸张、作业本、尺子、剪刀

教学的基本思路(或流程)

教学过程:

一、从旧知到新知,引入新课

根据人教版数学教材中的实例,开展新课堂。

1、课前回忆圆周长的计算公式

(1)在一道题目中,已经知道圆的半径r的数值,怎样计算圆的周长C?

(2)在一道题目中,已经知道半圆的直径R或者四分之一圆的半径r,应该怎样计算这些圆的周长C?

2、明确圆的面积的相关定义:

学习过程1:老师可以拿出课前准备的纸张,用圆规在纸面上画2个大小不一的平面圆,并拿出剪刀进行相应的裁剪。老师:这是两个一样的圆吗?他们一样大吗?

学生:不一样大,一个大、一个小。

老师:你们是怎么判断的呢?

学生A:用眼睛看,它们明显不一样大小。

学生B:把它们重叠在一起比较,哪个大就说明哪个是大圆,哪个是小圆。

老师:在生活中我们凭借着肉眼来辨别这些东西的大小,那么在数学上我们是怎样判别他们的呢?这时我们伟大的`数学家们就引入了一个“圆的面积”的概念,通过计算他们的面积大小来确定其大小。

学习过程2:理清“圆的周长”和“圆的面积”之间的区别

老师要用标准的圆形教具,动手指出圆周长和圆面积之间的区别。理清之后,归纳两者之间定义的不同,即圆的周长是指构成圆一周的密闭曲线的长度,而圆的面积是指某个圆占平面的大小。

二、巧用游戏化形式,辅助学生理解

学习过程1:老师使用PPT课件展示问题:一个4厘米的正方形和一个半径r为4厘米的圆形,怎么比较它们的面积大小。鼓励同学们发挥自身的想象力,对圆面积的大小进行猜想,在讨论后,老师展示结果。在此过程中(老师所呈现的PPT有猜想过程)得出,该圆面积比4个同边长的正方形比较要小,而比3个同边长的正方形要大。老师:可见,圆的面积的大小无法直接用正方形来衡量计算。

学习过程2:老师带领学生们回忆其他几何平面图形面积(如:三角形、平行四边形、长方形等)的计算方法。老师同步PPT的内容,唤起学生们的记忆,即我们在计算一个新的平面几何图形的时候,往往会采取分割、拼接、补全等方法将其转化为熟悉的图形,开展运算,也就是化难为易。

三、教师引领,带领学生一起推导圆面积公式

学习过程1:探索拼接成的长方形和圆之间的关系。

首先,老师提出问题:拼接而成的长方形和圆之间的什么联系呢?鼓励同学们开动自己的脑筋,进行思考。思考完毕,可以邀请几位同学进行回答,最后老师进行总结(展示PPT相关内容)

圆的半径≈长方形的宽

学习过程2:寻求其他推导方法

开展小组讨论(4人为一学习小组):运用转化思想,来求圆的面积。讨论完毕后,小组成员可以派代表进行讲解,此过程有利于提高学生之间的合作和表达能力。

四、实战练习,提高解题效率

自主完成课后习题,明天上课前小组组长要汇报作业情况。同时也不布置一些作业,如下:

计算下列圆的面积和周长(1)已知某圆r=3cm,求S和C(2)已知r=5cm,求S和C

《圆的面积》教学设计6

一、学习目标:

1、通过观察、操作、分析和讨论,推导出圆的面积公式。

2、能利用公式进行简单的面积计算,会解决简单的实际问题。

3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。

重点:

圆的面积公式的推导及应用公式计算。

难点:

圆面积公式的推导过程。

二、教学准备:

教学课件

分成不同等份的圆形卡纸、纸板、胶棒

三、教学过程:

(一)、复习铺垫,导入新课:

1、看到老师手中的圆,你能想到有关圆的什么知识?

学生汇报。

2、你们还想知道圆的什么知识?

学生交流。

3、那你知道什么是圆的面积吗?

学习圆的面积的概念。

请学生到台前比划比划。

4、你已经会计算哪些平面图形的面积了?打开练习本写一写。

全班反馈。

师课件出示图形及公式。

5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。

学生汇报交流,教师课件演示。

回忆平行四边形面积计算公式的推导过程。

高宽

6、总结方法:这些图形面积公式的推导过程有什么共同点?

预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。

师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的`关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?

师板书:转化法

(二)、利用转化,推导公式:

1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?

学生操作。

2、师:谁能告诉老师你们小组把圆转化成了什么图形?

生到台前展示。

预设:生1:我们小组把圆转化成一个近似的长方形。生2:我们小组把圆转化成一个近似的平行四边形。

师:大家真了不起!通过动手操作把圆转化成了这么多近似的图形。

师板书:操作法

3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?

预设:生1:平均分的份数越多,拼成的图形越接近于长方形。

生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。

4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。

(1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?

(2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?

(3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?

小组同学之间互相说说推导过程。

5、全班演示、汇报:

学生到台前演示交流。

(1)把圆16等分拼成近似的平行四边形。

(2)把圆32等分拼成近似的长方形。

(=(r)

①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。

②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。

教师课件演示。组织学生进行语言表述。

(三)、认真练习,巩固新知:

1、师:计算圆的面积一定要有什么条件?学生交流。

2、课件出示练习题:

(1)求下面各圆的面积。

r= 3厘米

d= 2分米

C= 12。56米

(2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)

(3)圆形花坛的直径20m,它的面积是多少平方米?

拓展练习:

一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。

(1)这头奶牛最多可吃掉多大面积的草?

(2)奶牛吃不到的草坪的面积有多大?

四、板书设计:

学习方法:

转化法

长方形面积=长×宽

操作法↓ ↓

圆的面积=圆的周长的一半×圆的半径

化曲为直S = πr × r

平行四边形面积=底×高

↓ ↓

圆的面积=圆的周长的一半×圆的半径

S = πr × r

五、教学反思:

圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。

(一)、重视自主探究,促进合作交流。

让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。

引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。

(二)、运用多媒体手段,激发学生学习兴趣。

在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。

(三)、练习设计适当,由浅入深地巩固新知。

课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

《圆的面积》教学设计7

教学目的

1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

教学重点:圆面积计算

教学难点:公式以及推导。

教学过程

一、复习并引入课题。

1.口算:2π 9.42÷π 12.56÷π

2.已知圆的半径是2.5分米,它的周长是多少?

3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

4.说出平行四边形的面积公式是怎样推导出来的?

5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

二、新课讲授

1.圆的面积的含义。

问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

2.圆的面积公式的推导。

问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

教师拿出圆的面积教具进行演示:

先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

强调:如果分的等份越多所拼的图形就越接近长方形。

问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

学生独立完成圆面积公式的推导:

总结:我们用S表示圆的面积,那么圆面积的大小就是:

再次强调:

(1)拼成的图形近似于什么图形?

(2)原来圆的面积与这个长方形的面积是否相等?

(3)长方形的长相当于圆的哪部分的长?

(4)长方形的宽是圆的哪部分?

(5)用S表示圆的面积,那么圆的面积可以写成:S=πr

2 3.圆面积公式的应用。

师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

(学生独立完成,教师巡视,对有困难的学生给予辅导。)

教师板演计算过程。

出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

问题:你能利用内圆好外圆的面积求出环形的面积吗?

学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)

三、巩固练习。

1.根据下面所给的条件,求圆的面积。

半径2分米。

直径10厘米。

(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

(2)强调书写格式,运算顺序与单位名称。

总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

四、课堂小结

总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

另外,我们在前面也学习了如何求圆的周长,需要注意的是:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书圆的面积

长方形的面积=长×宽圆的面积=周长的一半×半径S=πr×r S=πr

教学反思

圆的面积是学生在学习了圆的基本特征、圆周长的探讨、应用后学习的,因为学生在学习圆的周长公式探讨的时候已经明白了“化曲为直”的数学思想,所以在探讨圆的面积公式时,在这个基础上再渗透“数学的极限思想”,学生在这样的情况下,学习的圆的面积计算,有利于学生知识的迁移,这样,也是学习上的一次飞跃,所以,在教学过程中,我注重了以下几个环节的教学:

一、从圆的周长到圆的面积体验其中不同

本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的'面积计算的方法奠定基础。

二、大胆猜测,激发探究

在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

三、演示操作,加深理解当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。

四、引导学生主动参与知识的形成过程。

五、存在和改进的地方有:

1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;

2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!

《圆的面积》教学设计8

教学内容:

新人教版数学六年级上册第67—68页,圆的面积。

教学目标:

1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。

2、经历圆的面积计算公式的推导过程,体会转化的思想方法。

3、培养认真观察的习惯和自主探究、合作交流的能力。

教学重难点:

1、运用圆的面积计算公式解决实际问题。

2、理解圆的面积计算公式的推导过程。

教学准备:多媒体课件

教学方法:自主探究,合作交流

教学过程:

一、小测验:

1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。

2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。

二、问题引入

1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?

2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)

3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)

三、探索新知

(一)复习,平面图形面积的计算方法。

(二)探索圆面积的计算方法

1、我们一起来推导圆的面积公式吧!

2、利用多媒体课件展示圆的.面积公式的推导过程。

(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。

(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。

3、在图形的拼凑与转化中,同时观察与思考以下问题。

a、拼凑中,圆在转化成什么图形?

b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?

4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)

因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)

如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2

5、学生齐读公式

S= πr2

教师强调r2= r × r(表示2个r相乘)

(三)应用公式

一个圆的半径是4厘米。它的面积是多少平方厘米?

思考:

1、本题已知什么,要求什么?已知圆的半径,求圆的面积。

2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,

3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。

1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?

2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。

3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。

4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。

(四)知识应用

1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。

课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。

2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。

3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。

四、课堂总结:这节课,你有哪些收获?

说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。

五、作业布置:

教材第71页,练习十五,第1题~第4题。

《圆的面积》教学设计9

教学内容:

国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题

教学目标:

1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。

2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。

3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。

教学重点:

探索圆面积的计算

教学难点:

理解面积的意义,推导圆的面积计算公式

教学过程

一、导入新课。

(一)关于圆你已经知道了什么?你还想知道什么?

(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)

(三)你觉得圆的面积可能和什么有关?

(四)出示下图

(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2

和3r2的)关系。

(六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?

小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。

二、探索圆积的计算公式

(一)让学生试着将圆剪拼成长方形。

(二)阅读课本P104页

(三)让学生再操作

(四)课件演示

(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。

(六)引导观察讨论:这个拼成的长方形和圆有什么关系?

(七)汇报讨论结果。

这个用圆分割成的小块拼成的长方形,宽就是圆的'半径r,长就是圆的周长的一半,也就是2πr÷2=πr。

因为长方形面积=长×宽

所以圆的面积=πr×r=πr2

用S表示圆的面积,那么圆的面积计算公式就是:

S=πr2

(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)

(九)教学例9

1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?

2、让学生尝试解答。

3、集体评议

4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)

三、知识运用

(一)求出下列各个图形的面积。(P105页的练一练)

(二)根据下面所给的条件,求圆的面积。

1)半径2分米2)直径10厘米3)周长12.56

(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)

四、本课小结。

通过本课的学习你有什么收获?有什么体会?

《圆的面积》教学设计10

  教学目标:

1. 知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣, 培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

3. 情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。

教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。

  教学难点:理解圆的面积公式的.推导过程。

教学准备:课件、圆形白纸、剪刀。

教学过程

一、创设情景,引入新课

1、出示主题情景图:

①从图中你获得哪些数学信息?

②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?

2、说一说:什么叫圆的面积?

3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)

【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。

二、合作交流,探索新知

1、回顾旧知:

回顾以前学过的平面图形面积公式是如何推导出来的?

指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。

【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。

2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?

3、合作探究:

(1)猜想

(2)动手操作,验证猜想。

(3)汇报交流,展示成果(分层展示学生研究成果)。

【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

4、借助网络画板制作的动态课件展示圆面积的推导过程。

展示不同的等份数拼成不同的平行四边形,感受极限的思想。

【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。

5、推导圆面积公式。

①比较转化后的图形与圆,你发现了什么?

②全班交流,根据学生叙述板书:

长方形面积= 长 × 宽

圆的面积 =圆周长的一半 × 半径

=Лr × r

=Лr

6、小结:圆的面积计算公式: S =Лr

【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。

7、知识应用、内化提高

(1)、 求下列圆的面积。(只列式不计算)

r=3cm

(2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?

(1) 认真读题,理解题意。

(2) 你认为怎样解决这个问题?

(3) 学生尝试独立计算。

(4) 汇报解答过程及结果,集体评价。

【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。

四.联系生活、拓展延伸

1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?

2、把一个周长为18.84cm的长方形改围成一个圆,围成圆的面积是多少?

3、求下列圆的周长和面积。

r=2cm

4、求半圆的面积。

r=4cm

【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。

5、回顾整理,全课总结

今天我们学到了哪些新知识?你有哪些收获?

【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。

《圆的面积》教学设计11

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.CAI课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

3.探究联系。

师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

师:谁来告诉大家,它们的面积有没有改变?

师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

4.推导公式。

师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

师:好,谁能首先告诉老师,这个长方形的宽是多少?

师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

二、运用公式,解决问题

1.教学例1。

师:同学们,从这个公式我们可以看出,要求圆的'面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

2.完成做一做。

师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)

3.教学例2。

师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

师:找到解决问题的方法了吗?

师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。

三、课堂小结

师:同学们,通过这节课的学习,你有什么收获?

四、课堂作业。

《圆的面积》教学设计12

教学内容:

冀教版六年级上册第四单元

教学目标:

1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。

2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。

3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。

4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。

教学重点:

在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。

教学难点:

能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。

教学流程:

一、炫我两分钟

大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即

同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。

出示口算题目。

随机评价。

相信我们都是有智慧有思想的人,我要为你们点赞(动作)。

二、组内交流,完善梳理

教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。

【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】

三、小组合作交流。

组内交流尝试小研究。

出示小组合作交流建议:

1、组长组织本组成员有序进行交流。

2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。

4、再次确认发言顺序,准备全班交流。

【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的`欲望。】

四、班级交流,提升梳理

1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。

2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。

【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】

3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。

师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。

【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】

五、应用拓展

结合练习做相应题目,巩固易错易混知识。

(一)基础题

1、判断下面各题是否正确,对的打“√”,错的打“×”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )

(2)半径为2厘米的圆的周长和面积相等。 ( )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

2、一个圆的周长是25、12米,它的面积是多少?

3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

(二)拓展提高

1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?

2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?

3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?

【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】

六、个人整理

经过本课时的学习,你有哪些收获呢?

【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】

《圆的面积》教学设计13

教学目标:

1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

教学重难点:

圆面积公式的推导。

教学关键:

弄清圆与转化后的近似图形之间的关系。

教具:

多媒体计算机。

学具:

每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

教学过程:

一、复习旧知、设疑导入

同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

二、动手操作、探索新知

1、通过度量,猜想圆面积的大小。

用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

初步猜想:圆的面积相当于r2的3倍多一些。

3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的.。

2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

3、学生小组合作。

(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

⑤你能推导出圆面积计算公式吗?

(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

三、看书质疑、自学例3,注意书写格式和运算顺序

四、运用新知,解决问题

1、一个圆的半径是5厘米,它的面积是多少平方厘米?

2、看图计算圆的面积。

3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?

4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

(1)可测圆的半径,根据S=πr2求出面积。

(2)可测圆的直径,根据S=π(d/2)2求出面积。

(3)可测圆的周长,根据S=π·(c/2π)2求出面积。

五、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

六、布置作业

七、板书设计

圆的面积

长方形的面积=长×宽圆的面积=周长的一半×半径

S=πr×r;S=πr2

《圆的面积》教学设计14

教学内容分析:

圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

学生情况分析:

小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

教学目标:

1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

教学重难点

重点:圆的面积计算公式的推导和应用。

难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

教学准备:

教具:多媒体课件、面积转化教具。

学具:书、计算器、16等份教具、作业纸。

教学过程:

一、创设情境、揭示课题

1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

(复习圆的相关特征)

师:那马最多能吃多大面积的草呢?

师:圆所围成的平面的大小就叫做圆的面积。

师:今天我们继续来研究圆的面积。(揭示课题)

2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

二、猜想验证、初步感知

1、实验验证

(1)师:猜一猜,圆的面积可能会和它的什么有关系?

师:你觉得圆的面积大约是正方形的几倍?

(2)师:对我们的估计需要进行?

生:验证。

师:用什么方法验证呢?

师:下面请大家先数数圆的面积是多少。

师:数起来感觉怎么样?有没有更简洁一点的方法?

(引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

(让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

圆的半径

(cm)

圆的面积

(cm2)

圆的面积

(cm2)

正方形的面积

(cm2)

圆的面积大约是正方形面积的几倍

(精确到十分位)

(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

(学生完成后交流汇报。)

师:仔细观察表中的数据,你有什么发现?

生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

生:圆的面积是它半径平方的3倍多一些。

小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

三、实验操作、推导公式

1、感受转化,渗透方法

(课件再次出示马吃草图)

师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

(引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

(学生回忆后汇报,教师演示,激活转化思路)

3、第一轮探究——明确思路,体会转化

师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

生:剪圆。

师:怎么剪呢?沿着什么剪?

生:沿着直径或半径剪开。

(分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

4、第二轮探究——明确方法,体验极限

师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

生:想把圆形转化成平行四边形。

师:那还能更像吗?

生:可以将圆片平均分成16份。

(引导学生把16、32等份的圆拼成近似的长方形,上台展示)

师:从哪儿可以看出这两幅图更接平行四边形了?

生:边更直了。

师:是什么方法使得边越来越直了?

生:平均分的份数越来越多。

(引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的`份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

(2)师:我们把圆转化成了长方形,什么变了,什么没变?

生:形状变了,面积大小没有变。

师:这样就把圆的面积转化成了?

生:长方形的面积。

师:要求圆的面积,只要求出?

生:长方形的面积。

5、第3轮探究——深化思维,推导公式

师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

(小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

(通过长方形面积计算方法,引出圆的面积计算方法)

师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

生:π倍。

师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

生:半径。

5、做“练一练”

完成作业纸第3题,交流反馈。

6、(课件再次出示牛吃草图)

师:这匹马最多能吃多大面积的草,现在会求了吗?

【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

四、解决问题、拓展应用

1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

(课件出示例9)

分析题意后学生独立完成书本第105页例9。

(组织交流,评价反馈)

2、完成作业纸第4题

师:接着看,默读题目,完成作业纸第3题。

(学生独立完成,交流反馈)

五、全课小结、回顾反思

师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

板书设计:

圆的面积

转化

新的图形学过的图形

演示图

长方形的面积=长×宽

圆的面积=圆周长的一半 × 半径

Sπr×r

πr2

(1)3.14×22(2)8÷2=4(cm)

=3.14×43.14×42

=12.56(cm2)=3.14×16

=50.24(cm2)

《圆的面积》教学设计15

本节课内容是求圆的面积

⑴引导学生通过观察了解圆的面积公式的推导过程

⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

重点:圆的面积公式的推导过程以及圆的面积公式的应用。

难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的.周长的一半的理解。

师问:

(1)长方形面积公式

(2)平行四边形面积公式

师:平行四边形面积公式的求法是借住谁来推导出来的?

用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

问题:

(1)小牛能够吃草的最大面积是一个什么图形?

(2)如何求圆的面积呢?

(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

(2)让学生动手操作:

教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

(3)让学生转化的过程进行展示。(略)(多组学生展示)

(4)用多媒体进行验证。

让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

(5)引导归纳:

思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

思考2:长方形的长、宽与圆有什么关系呢?

再次多媒体展示动画。

师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,即:圆的面积=长方形的面积=长×宽=πr×r

得到:s圆=πr×r

师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

(2)出示例题:

例题1:已知一个圆的直径为24分米,求这个圆的面积?

a、让学生独立练习,b、指名板演,c、师生评议。

例2、一个圆形花坛,周围栏杆的长是25.12米,这个花坛的种植面积是多少?(π≈3.14)

a、学生独立练习,b、指名板演,c、师生订正。

师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

1、判断题

(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

(2)半径为2厘米的圆的周长与面积相等。()

2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

师:(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。