范文网 >资料大全 >综合资料 >《倍数和因数》教学反思

《倍数和因数》教学反思

小瓶盖 分享更新时间:
投诉

《倍数和因数》教学反思

作为一名优秀的人民教师,我们要有一流的教学能力,通过教学反思可以有效提升自己的教学能力,教学反思应该怎么写才好呢?以下是小编精心整理的《倍数和因数》教学反思,希望对大家有所帮助。

《倍数和因数》教学反思1

本单元涉及到的因数、倍数、质数、合数以及第四单元中出现的最大公因数、最小公倍数都属于初等数论的基本内容。是学生通过四年多数学学习,已经掌握了大量的整数知识,包括整数的认识、整数四则运算的基础上进一步探索整数的性质。

在教学中,通过教授学生认识“因数和倍数”,并掌握他们的特征:因数和倍数不能单独存在,并通过观察比较几个数的因数(或倍数),知道几个数公有的因数(或倍数)叫做他们的公因数(或公倍数),且能够在几个数的因数(或倍数还)中找出他们的公因数(或公倍数)。

接下来学习“2、3、5的倍数的特征”。发现2、5、3倍数的规律和特点。在此之前还要向学生教学什么是“奇数”什么是“偶数”,只有掌握了奇数与偶数,学习“2、5的倍数”的特征就会简单容易得多。而“3的倍数”的'特征就是引导学生把各个数位上的数相加,的到的数如果是3的倍数的话,说明这个数就是3的倍数。

那么,又如何让学生学习掌握质数与合数呢?在教学中,我主要是让学生把1~

20的因数分别写出来,并按照奇数为一列偶数为一列来让学生进行观察比较,然后归类整理:只有1个因数的有哪些数?有两个因数的有哪些数?有3个以上因数的有哪些数?学生分好之后,教师明确:向这样只有2个因数的数叫做质数,有2个以上因数个数的数叫合数,1既不是质数也不是合数。那么自然数按因数的个数来分就可以分为“1、质数、合数”三大类。

为了让学生巩固质数与合数,再让学生找出1~100以内的所有质数:先划掉除了2以外所有2的倍数,再划掉3的倍数、划掉5的倍数、最后划掉7的倍数,所剩下的数就是质数,并且让学生数出、记住100以内有25个质数。也可以用同样的方法去判定100以外的数是质数还是合数。

最后,再学生讲解介绍“分解质因数”,知道用短除法来分解质因数。然后对整个单元所学的知识进行梳理、归类,让学生熟记一些特殊的规律与数字,多做一些练习,加强的后进生的关注和辅导。

《倍数和因数》教学反思2

在上学期的白纸备课活动中,我们高年段数学抽到的教学内容就是因数与倍数,这个内容是我没有教过的,在看到教学内容时,我心里不禁在打鼓,我能找准教学重难点吗?能突破重难点吗?一连串问题涌了上来,最后我还是让自己冷静下来,静下心来认真分析教材,尽自己最大的努力梳理出教学重难点,创设情境、设计游戏来突出重点、突破难点。在设计完教学过程后,我也与同组的老师交流了活动体会。原来在老教材中没有因数这个概念,只有约数和倍数,而且是由整除的概念引入的,但因为我是第一次教学这个内容,很自然的就没有被以往教材的教学定式所束缚,尝到了新教材的甜头。现在刚好又教了这个内容,仔细参考了教学用书我才真正领悟到了新教材的新颖所在。

新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基础上再引出因数和倍数的概念。实际上,由于乘除法本身就存在着互逆关系,用乘法算式(如b=na)同样可以表示整除的含义。因此,新教材中没有用数学化的语言给“整除”下定义,而是利用一个简单的`实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,学生不必通过12÷2=6得出12能被2整除,进而2是12的因数,12是2的倍数。再通过12÷6=2得出12能被6整除,进而6是12的因数,12是6的倍数,大大简化了叙述和记忆的过程。在这儿,用一个乘法算式2×6=12可以同时说明“2和6都是12的因数,12是2的倍数,也是6的倍数。”

这样的设计既减轻了学生的学习负担又让学生在学习时尽量避免出现概念混淆、理解困难的问题。学生对新知掌握较牢,在实际教学中我就是这样处理的,学生乐学,思路清晰。

《倍数和因数》教学反思3

《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

(一)操作实践,举例内化,认识倍数和因数

我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。

(二)自主探究,意义建构,找倍数和因数

整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

新课程提出了合作学习的学习方式,教学中的.多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。

找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

(三)变式拓展,实践应用---—促进智能内化

练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。

由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

《倍数和因数》教学反思4

这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

一、尊重教材,引导学生实现从形象向抽象的飞跃。

教材中首先引导学生理解数与数之间的关系,进而用乘法算式把不同的列法表示出来,再根据乘法算式教学倍数和因数的意义。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,

二、细化过程,让学生在充分交流中感悟理解倍数和因数的意义。

倍数和因数的意义是本单元的重要知识,其他内容的教学都以此为基础。在学生得出乘法算式后,首先引导学生观察3×4=12这道算式,边指着算式边先介绍“12是3的倍数”,然后启发学生“看着算式你还能想到什么?”很多学生已经领会12也是4的倍数,指名说后,再强化一下让学生连起来说说谁是谁的倍数。接着教学“3是12的因数”,再启发“这时你又能想到什么?”学生很容易联想到“4也是12的因数”,而且学生的学习兴趣浓厚、求知欲强。这时再让学生完整的说一说谁是谁的倍数,谁是谁的因数,已经“水到渠成”。在初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系之后,接着练一练让学生根据2×6=12先同桌互相说说哪个数是哪个数的倍数(或因数),在全班交流。最后根据1×12=12先指名说一说哪个数是哪个数的倍数(或因数),再让学生轻声地说说有点特别的两句。

整个过程处理细致、层次清晰、有扶有放,生生交流、师生交流充分,反馈及时、兼顾学困生,让学生在迁移中理解倍数和因数的意义。

三、由点及面,巧架平台,让学生在师生互动中建立完整的数学模型。

找一个数的倍数或因数,既能巩固倍数和因数的意义,也为研究倍数的特征及意义作准备。探索找一个数的倍数或因数的方法时,重点是帮助学生建立相应的数学模型。

探索求一个数因数的方法是本课的难点,例题直接安排找24的因数更是困难。教学中我还是利用3×4=12做铺垫,引导学生先找一找12的因数,初步感知了找因数的方法。然后层层推进,先让学生想一道算式找24的因数,引出根据除法找因数的`方法,再让学生按除法通过自主探究找出24的所有因数,接着组织学生比较、讨论、优化提升出找一个数的因数的方法。

教学4的倍数时,学生在4×4=16的铺垫下,很容易找到一个或几个4的倍数,但是想要“一个不漏且有序的找全,并体会出4的倍数的个数是无限的”却很难。如何引导学生建构完整的倍数的数学模型呢?我遵循学生的认知规律,然后引导学生按从小到大的顺序整理,接着向两头延伸:有比4更小的吗?接着4×2=8,4×3=12,4×4=16,…像这样说下去说得完吗?4的倍数的特点逐步在学生的脑海中得以完善、合理建构。

这样搭建了有效的平台、形成了师生互动生成的过程,学生经历了无序、不完整逐步由点及面向有序、完整的思维迈进,有效的建构了数学模型。

《倍数和因数》教学反思5

《倍数和因数》这一节的主要内容是让学生在已有知识和经验的基础上,自主探索和总结找一个数的倍数和因数的方法;用“列举法”研究一个数的倍数的特点和一个数的因数的特点。 这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。 这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

(一) 操作实践,举例内化,认识倍数和因数

我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念,使数与形做到了有机的结合。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,降低了难度,效果较好。

(二)自主探究,意义建构,找倍数和因数

一个数的倍数与因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,我提出“任何一个不是0的自然数的因数有什么特点,”让学生观察12,20,16,36的因数,思考:一个数的因数的个数是有限的还是无限的?其中最大的因数是几?最小的呢?让学生的思维有了明确的指向。整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的`意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

(三)抓住学生思维的“最近发展区”,让学生在“独立思考——集体交流——互相讨论”的过程中,促使学生学会有序思考,从而形成基本的技能与方法,既关注了过程,又关注了结果。

找一个数的因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流再让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

(四)变式拓展,实践应用---—促进智能内化

练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。

(五)重视数学意义的渗透与拓展,力求用数学的本质吸引学生,树立为学生的继续学习和终身发展服务的意识。本节课的设计,我就关注了学生的学习后劲。如列举法的介绍,有序思考的解决问题的策略等。

由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我让学生先进性了预习,做好了一定的准备工作。在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

《倍数和因数》教学反思6

我发现"倍数和因数"这一单元大部分学生基础知识及基本概念掌握较好,倍数与因数的应用相当部分学生应用也比较灵活。从学生的答卷情况来看存存在问题也不少,纵观本单元的教学,从中得到的反思:

1、创设了学生熟悉的生活情境

不论是新课的讲授还是知识的实际应用,都是从学生已有的生活经验出发,激发了学生主动学习与参与的兴趣,引导学生感悟到,生活中处处有数学,数学中的倍数、因数就在身边,从生活中学习数学、应用数学问题。

2、采用了小组合作学习的模式

在新课的教学中,让学生通过观察,发现现实生活中的数以及有关倍数、因数的特征及应用以后,在学生独立尝试解决问题的基础上进行小组讨论:如何合理将分类,2、3、5的倍数的特征,如何找因数,找质数等等,这些都有以小组讨论作为探索新知的起点,在小组合作学习中,给学生搭建自主的活动空间和交流的平台。

3、充分体现了以学生为主体的指导思想

在课堂上,努力营造轻松、愉快的学习环境,引导学生积极参与学习过程。重视让每个学生都在小组内发表自己的想法,每个知识点的建立、新知识的形成尽量让学生从已有知中识讨论、寻求,同时也倾听同伴的观点,相互学习。体现以“以人发展为本”的新理念,尊重学生,信任学生,敢于放手让学生自己去学习。整个教学过程学生从已有的知识经验的.实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中让让学生体验了解决问题的喜悦或失败的情感。

4、重视新知识的应用

每学习一个新的知识点及时让学生运用所学的知识解决实际问题,使学生感到数学就在生活中,并且运用新知识灵活解决问题。

5、不足之处

(1)、在教学中还有一小部分学生未积极参与到学习中来,如何让全体学生都参与到数学研究中来,仍有待于进一步的加强。

(2)、本单元的测验卷的应用部分要求学生说明解题的理由的比较多,而学生也失分比较严重,说明学生在这方面知识较薄弱,今后的教学中要加强突破这一环节。

(3)、也出现了很多教学的困惑.如在教学中明知一小部分学生在某些知识点存在缺陷,但很难抽时间弥补及跟进。

《倍数和因数》教学反思7

不知不觉,我们又进行了第二单元的学习。第二单元的内容是《因数与倍数》,这部分内容与老教材相比变化很大,我觉得第二、四单元是本册教材中变化最大的单元,要引起足够的重视。

1、以往认识因数和倍数是借助于整除现象,“X能被X整除,或X能整除X”,所以X是X的因数,X是X的倍数。现在的教材完全不同了,2X3=6,所以2和3是6的因数,6是2和3的倍数,借助整除的模式na=b直接引出因数和倍数的概念。

2、以往数学教材中,概念教学的量很大。数的整除,因数(老教材称为约数),倍数,2、5、3的倍数的特征(老教材称为能被2、5、3整除的数的特征),质数,倒数,分解质因数,最大公因数(以往的教材中称为最大公约数),最小公倍数等内容共同编排在后面,合为一个单元。而现在新教材本单元只安排了因数和倍数,2、5、3的倍数的特征,质数合数。其它内容安排在了第四单元《分数的意义和性质》,借助约分引出公约数、公倍数的学习,改变了概念多而集中,抽象程度过高的现象。

3、以往求最大公约数,最小公倍数时,采用的方法是唯一的、固定的,也就是有短除法分解质因数,而新教材中鼓励方法多样化,不把它作为正式的'内容教学,而是出现在教材的你知道吗中?不那么呆板了,尊重学生的思维差异。

可见,编者为体现新课标精神对本部分内容作了精心的调整,煞费苦心,可是学完了本单元的第一部分和第二部分内容,我对本单元的学习内容有了小小的疑问。这一单元内容分为因数和倍数,2、5、3的倍数的特征,质数和合数,我觉得第一部分内容和第三部分内容的关系很大,连续性强。知道了什么是因数和倍数,也会找一个数的因数和倍数了,那么就应该从找因数和个数问题上学习质数和合数。教材对质数和合数的学习内容设计较好,开门见山让学生找出1-20各数的因数,观察因数的个数有什么规律,再引出质数和合数的学习。可为什么在中间突然加上了2、5、3的倍数的特征?这样感觉前后内容失去了联系,不够自然流畅。所以我觉得可以把二三部分内容作为适当的调整,即因数和倍数,质数和合数,2、5、3的倍数的特征会比较好一些。

《倍数和因数》教学反思8

《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的'区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。

虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:

11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?

特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。

《倍数和因数》教学反思9

简单的内容中蕴藏着复杂的关系,由于新教材把“整除”的概念去掉,再也不提谁被谁整除,而改成借助整除模式na=b,直接引出因数和倍数的概念,这部分内容显得比较容易了,学生在学因数时,对于求一个数的因数,及理解一个数的因数最小是1,最大因数是它本身,及一个数的因数的个数是有限的,感觉很清楚,明白。在学倍数时,对求一个数的倍数及理解一个数的倍数中最小的是它本身,没有最大的倍数也认为容易简单,但有关因数、倍数的综合练习不少学生开始犹豫、混淆。如判断一个数的因数的个数是无限的,不少学生判断为对。练习中:18是的倍数,个别学生选择了18、36、54……。针对这种情况,我调整了练习,组织学生研究了以下几个问题:

1、写出12的因数和倍数,写出16的因数和倍数。

2、观察比较,会打消列问题:一个数的因数和它本身的关系,

3、为什么一个数的因数的个数是有限的?最小是1,最大是它本身,也就是1和它本身之间的整数。为什么一个数的`倍数的个数是无限的?最小是它本身,没有最大的。

通过对这几个问题的讨论,多数学生较好的区分了一个数的因数和倍数

《倍数和因数》教学反思10

去年教学《公倍数和公因数》这一单元时,依照学生预习、阅读课本进行教学,老师没有作过多的讲解,从学生的练习反馈中,部分学生求两个数的最大公因数和最小公倍数错误百出,反思教学后,觉得用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……调查询问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“太麻烦了”。

今年教学《公倍数和公因数》这一单元时,我在去年教学《公倍数和公因数》的基础上作了一些改进:

一、仍然是将预习前置。

二、动手操作,想象延伸。

让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。

用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

学生分组操作,用除法算式把不同的摆法写出来。

提问:通过刚才的活动,你们发现了什么?

以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的.理解。

思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。

四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。

课后反思:

一、预习后的课堂教学,还要教,直接放手要出问题。

二、介绍一下短除法是有必要的。但不能直接按传统的教学思路以短除法求最大公因数和最小公倍数简单代替列举法。

三、应逐步鼓励学生把求最大公因数和最小公倍数过程想在脑中,直接说出结果。引导感兴趣的同学在课后探索其它的求最大公因数和最小公倍数的内容,适当提高学生的思维水平。

《倍数和因数》教学反思11

教学目标:

1、 使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,能在1~100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。

2、 使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

教学过程:

一、谈话导入。

智力题:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?

教师说明:人和人之间是有联系的,数和数之间也是有联系的。(板书:数和数)

二、初步认识倍数和因数。

1、创设情境。

用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。

学生汇报拼法,教师依次展示长方形的拼图,并板书:

43=12 62=12 121=12

教师根据43=12 揭示:43=12 12是4的倍数,12也是3的倍数,4和3都是12的因数。

揭示课题:倍 因

提出要求:你能用倍数和因数说一说 62=12 121=12吗?

指名学生回答,其他学生补充。

2、深化感知。

(1) 完成想想做做第1题。同桌互说以后再指名学生叙说。

(2) 你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?

教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

三、探求一个数的倍数。

1、设疑。

在刚才的学习中,我们知道了3的倍数有12,3的倍数除了12还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。

2、交流。

投影展示学生作业。

讨论对不对?。

讨论好不好?。

揭示有序,为什么要有序地写倍数呢?

全班讨论:你是怎么写3的`倍数的?。

31 32 33

3 3+3 6+3

一三得三 二三得六 三三得九

引导学生讨论得出:用依次1、2、3写出3的倍数。

3、深化。

请写出2的倍数,5的倍数。

学生练习后组织评讲。

4、引导观察,发现规律。

小组讨论:观察这三道例子,你有什么发现?

全班交流,概括规律,

5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。

四、探求一个数的因数。

1、设疑。

刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。

请写出36的因数,你可以独立思考,可以和同桌讨论,看谁写得又对又多。

学生试写36的因数。

2、组织讨论。

你是怎么找36的因数的?

( )( )=36 从一道乘法算式中可以找到2个36的因数,66=36呢?

36( )=( ) 从一道除法算式中也可以找到2个36的因数。

讨论多。

问:写得完吗?你可以按照什么顺序写?

师板书36的因数(从两端往中间写),同时指出 :当两个因数越来越接近时,

也就快要写完了。最后写上句号。

3、巩固深化。

请写出15的因数,16的因数。

学生练习后组织评讲。

4、引导观察,发现规律。

问:通过观察这三道例子,你能发现什么规律?

5、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。

五、巩固拓展。

1、完成想想做做第2、3题。

学生填表后,组织讨论,你是怎么填写的?指名回答相应的问题。

2、猜数游戏。

同学们下飞行棋时,掷筛子,在1、2、3、4、5、6中进行猜数

(1)它是4的倍数。

(2)它是9的因数,又是3的倍数。

(3)2和3都是它的倍数。

(4)它是9的因数,又是3的倍数。

(5)它是这六个数的因数。

(6)它是因数。

(7)它既是本身的倍数,又是本身的因数。

教后反思:

这是一节概念课,关于倍数和因数教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式倍数和因数乘法算式找一个数的倍数和因数。从教材本身来看,这部分知识对于四年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。

一、设疑迁移,点燃学习的火花。

良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。学生发现3的倍数写不完时面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。教师一声亲切的问候:怎么停下来了呢?、一声惊讶:哦!写不完呀?、一句激励:能想出办法吗?。看似教师怠工的预设,是为了学生越位的生成。

二、渗透学法,形成学习的技能。

由于一个数倍数的个数是无限的,那么如何让学生体会无限、又如何有序写出来呢?我设计了尝试练习引出冲突讨论探究这么一个学习环节。学生带着又对又好的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕好展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了宝贵的学习时间,但是学生从中能体会

您现在正在阅读的《倍数和因数》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《倍数和因数》教学设计及反思到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。

三、活用教材,拓展学习的深度。

教材中安排36( )=( )这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助( )( )=36来寻找一个数的因数。

课尾,我设计了一道掷筛子猜数练习,通过7道题,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。

纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。

《倍数和因数》教学反思12

《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

这节课我在教学中充分体现以学生为主体,为学生的`探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。

比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。

新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。

《倍数和因数》教学反思13

1、立足于学生的思维特点。中年级学生的思维特点是由具体形象思维到抽象概括思维过渡的重要年龄段。因此,我放弃了用12个小正方形摆长方形的动手实践活动,而选用了看12个小正方形在脑中想象摆法。在留有短暂时间让学生思考,脑中逐渐有了长方形的图象纷纷举手之后,我又不急于提问,而是追问:你能不能用一道乘法算式来表示?当学生说出乘法算式时,也不急于就此,还让其余同学想想他是如何摆的,做到全员参与。这种由形象到抽象,再由抽象到形象的过程,是符合学生的思维特点的,对于发展学生的抽象概括思维是有利的。

2、层层辅垫,为学生自主探索打下了坚实的基础。探索36的所有因数是本节课的重难点,我在这之前做了层层的辅垫。

(1)3个乘法算式的呈现我作了调整:1×12=12,2×6=12,3×4=12。潜移默化的影响学生的有序思考。

(2)在学生根据其余两算式说因数和倍数的关系之后,我对12的.所有因数进行了小结:12的因数有1,12,2,6,3,4。让学生感受到一道乘法算式中蕴藏着两个因数。

(3)36这个数比较大,学生找起36的所有因数时有点困难,我设计了从3,5,18,20,36五个数中选择两个数来说说谁是谁的因数,谁是谁的倍数?这一教学环节,减轻了学生的困难,同时也能检验学生对因数和倍数概念是否已正确认识。当学生会说3是36的因数,36是3的倍数时,说明他们脑中已经有了判断的依据:3×12=36。

(4)在学生独立探索前,我又提醒学生,在找36的所有因数时,如果遇到困难,不要忘了我们已经寻找过12这个数的所有因数,可以作为参考。

这四个方面的准备,学生的独立思考才有了思维的依托,遇到困难,他们就会自我想办法,自我解决问题,这样的探索就会有效,不会浮于表面,流于形势。

3、有层次的呈现作业,给学生以正面引导为主。在概括总结找36所有因数的方法时,我找了三份的作业,第一份是有序,成对思考的1,36,2,18,3,12,4,9,6。在交流中让学生明确只有有序的,成对的思考才会做到既不遗漏,又能快捷方便,第二份作业是所有的因数按顺序排列的1,2,3,4,6,9,12,18,36。结果作业中漏了一个4,这是个时机,在表扬了这个学生能按顺序的排列,做到美观这个优点之后,提出问题:美中不足的是什么?学生:一个一个找麻烦,还容易丢。我接着追问;我们能给他提些建议吗?第三份是无序的有遗漏的,也让学生给他提建议,让他也能做到一个不漏。这三份作业对比下来,先教给学生正确的思考方法,再以正确的方法判断其他同学思考不当的地方,并提出建议。寻找一个数所有因数的方法也能深刻地印在学生脑里。

4、大胆放手,产生矛盾冲突,发现问题,想办法解决问题。在找3的倍数时,我想学生有了前面的学习基础,我直接抛出问题:你能像上面这样有序的从小到大的找出3的倍数吗?学生在找中发现:3的倍数有很多,写不完。我追问;那怎么办,有办法吗?通过一会儿的沉默思考后,纷纷有学生提出省略号。

5、趣味练习,联想,探索。练习中我设计了两道题,一是猜我的电话号码,激发起学生的兴趣,二是探索计数器的奥秘,多位老师问起我的设计意图,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉,牛顿看到苹果落地,通过联想,最终发现了万有引力定律,瓦特看到茶壶里冒出蒸气,通过联想,最终发明了蒸气机…这与一个人的认真观察,善于联想,勇于探索是分不开的。

《倍数和因数》教学反思14

《数学课程标准》倡导“自主——合作——探究”的学习方式,强调学习是一个主动建构的过程。因此,应注重培养学生学习的独立性和自主性,让学生在教师的指导下主动地参与学习,亲历学习过程,从而学会学习。

1、以“理”为基点,将学生带入新知的学习。

概念教学重在“理”。学生理解“因数”、“倍数”概念有个逐步形成的过程,为了促进这一意识建构,我先让学生通过自己已有的认知结构,经过“排列整齐的队形——形成乘法算式——抽象出倍数因数概念——再由乘法或除法算式——深化理解”,使学生在轻松、简约并充满自信中学习新知,在数与形的结合中,深刻体验因数倍数的概念。

2、以“序”为站点,培养学生的思维方式。

概念形成得在“序”。学生对于概念的形成是一个由表及里、由形象到抽象的过程。当学生对概念有了初步认识后,让学生探索如何找一个数的倍数的因数,这既是对概念内涵的深化,也是对概念外延的探索。这时思维和排列上的有序性是教学的关键,也是本节课的深度之一。在教学时,分为两个层次:第一个层次是让学生在已有的.知识基础上找12的因数,并在交流中,经历了一个从无序到有序、从把握个别到统揽整体、从思维混沌走向思维清晰的过程。抓住教学的难点“如何找全,并且不重复不遗漏”,让学生自由地说,再引导学生说出想的过程,并加以调整。表面看来仅仅是组合的变换,实质上是思维的提高和方法的优化,并让学生在对比中感受“一对一对”找因数的方法,经历了互相讨论、相互补充、对比优化的过程。第二个层次是在学生已经有了探索一个数因数的方法,具备了一定有序思考的能力之后,启发学生“能像找因数那样有序的找一个数的倍数”,提高了学生的思维能力。

3、以“思”为落脚点,培养学生发现思考的能力。

概念的生成重在“思”,规律的形成重在“观察”,教师如果能在此恰到好处的“引导”,一定会让学生收获更多,感悟更多。因此设计时,我借助了“找自己学号的因数和倍数”这个活动,在大量的有代表性的例子面前,在学生亲自的尝试中,在有目的的对比观察中,学生的思维被逐步引导到了最深处,知道了一个数的最大因数和最小倍数都是它本身,反过来也是正确的。教师在这里提供了有效的素材,可操作的素材,促使学生对所学的概念进行了有意义的建构,促进和发展了他们的思维。

《倍数和因数》教学反思15

新教材在引入倍数和因数概念时与以往的老教材有所不同,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我从以下三个方面谈一点教学体会。

一、设疑迁移,点燃学习的火花

良好的开头是成功的一半。我采用“拼拼摆摆”作为谈话进入正题,不仅可以调动学生的学习兴趣,一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。我设计了尝试练——引出冲突——讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,学生发现3的倍数写不完时都面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。

二、操作实践,举例内化,认识倍数和因数

我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助多媒体出示乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的'意义.使学生初步建立了“因数与倍数”的概念。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。

三、注重细节,注重学生的习惯培养

学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的

由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在总结倍数的特征,这一环节里缩短出示时间,直接以3个小问题出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

标签:因数倍数