范文网 >资料大全 >综合资料 >高三高考数学必背知识点总结归纳

高三高考数学必背知识点总结归纳

罪念 分享更新时间:
投诉

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面是小编给大家整理的高三高考数学必背知识点总结归纳,仅供参考希望能帮助到大家。

高三高考数学必背知识点总结归纳篇1

动点的轨迹方程动点的轨迹方程:

在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。

求动点的轨迹方程的基本方法:

直接法、定义法、相关点法、参数法、交轨法等。

1、直接法:

如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;

用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

2、定义法:

利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;

3、相关点法:

动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。

4、参数法:

求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。

5、交轨法:

求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。

求轨迹方程的步骤:

(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);

(2)写集合写出符合条件P的点M的集合P(M);

(3)列式用坐标表示P(M),列出方程f(x,y)=0;

(4)化简化方程f(x,y)=0为最简形式;

(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,

高三高考数学必背知识点总结归纳篇2

一、联结词

1.用联结词且联结命题p和命题q,记作pq,读作p且q.

2.用联结词或联结命题p和命题q,记作pq,读作p或q.

3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作非p或p的否定.

4.命题pq,pq,綈p的真假判断:

pq中p、q有一假为假,pq有一真为真,p与非p必定是一真一假.

二、全称量词与存在量词

1.全称量词与全称命题

(1)短语所有的任意一个在逻辑中通常叫做全称量词,并用符号表示.

(2)含有全称量词的命题,叫做全称命题.

(3)全称命题对M中任意一个x,有p(x)成立可用符号简记为xM,p(x),读作对任意x属于M,有p(x)成立.

2.存在量词与特称命题

(1)短语存在一个至少有一个在逻辑中通常叫做存在量词,并用符号表示.

(2)含有存在量词的命题,叫做特称命题.

(3)特称命题存在M中的一个x0,使p(x0)成立可用符号简记为x0M,P(x0),读作存在M中的元素x0,使p(x0)成立.

三、含有一个量词的命题的否定

命题命题的否定
xM,p(x)x0M,綈p(x0)
x0M,p(x0)xM,綈p(x)

四、解题思路

1.逻辑联结词与集合的关系

或、且、非三个逻辑联结词,对应着集合运算中的并、交、补,因此,常常借助集合的并、交、补的意义来解答由或、且、非三个联结词构成的命题问题.

2.正确区别命题的否定与否命题

否命题是对原命题若p,则q的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;命题的否定即非p,只是否定命题p的结论. 命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.

3.全称命题真假的判断方法

(1)要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立;

(2)要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可.

4.特称命题真假的判断方法

要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题.

高三高考数学必背知识点总结归纳篇3

一、间断点求极限

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限 存在;

3、渐近线,(垂直、水平或斜渐近线);

4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。

二、下面我们重点讲一下数列极限的典型方法。

(一)重要题型及点拨

1、求数列极限

求数列极限可以归纳为以下三种形式。

2、抽象数列求极限

这类题一般以选择题的形式出现, 因此可以通过举反例来排除。 此外,也可以按照定义、基本性质及运算法则直接验证。

(二)求具体数列的极限,可以参考以下几种方法:

a、利用单调有界必收敛准则求数列极限。

首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。

b、利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

(三)求项和或项积数列的极限,主要有以下几种方法:

a、利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

b、利用幂级数求和法

若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

c、利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。

d、利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

e、求项数列的积的极限

一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

高三高考数学必背知识点总结归纳篇4

判断函数值域的方法

1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。

3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域

4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。

6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)

7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。

高考数学知识点归纳:对数函数性质

定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}

值域:实数集R,显然对数函数无界。

定点:函数图像恒过定点(1,0)。

单调性:a>1时,在定义域上为单调增函数;

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数。

两句经典话:底真同对数正,底真异对数负。解释如下:

也就是说:若y=logab (其中a>0,a≠1,b>0)

当a>1,b>1时,y=logab>0;

当01时,y=logab<0;

当a>1,0

高考数学必考知识点:方差的性质

1.设C为常数,则D(C) = 0(常数无波动);

2. D(CX )=C2 D(X ) (常数平方提取);

证:

特别地D(-X ) = D(X ),D(-2X ) = 4D(X )(方差无负值)

3.若X 、Y相互独立,则

证:

记则前面两项恰为D(X )和D(Y ),第三项展开后为

当X、Y相互独立时,故第三项为零。

特别地独立前提的逐项求和,可推广到有限项。

高三高考数学必背知识点总结归纳篇5

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高三高考数学必背知识点总结归纳篇6

1.等差数列的定义

如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

2.等差数列的通项公式

若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d。

3.等差中项

如果A=(a+b)/2,那么A叫做a与b的等差中项。

4.等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N.)。

(2)若{an}为等差数列,且m+n=p+q,

则am+an=ap+aq(m,n,p,q∈N.)。

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N.)是公差为md的等差数列。

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。

(5)S2n-1=(2n-1)an。

(6)若n为偶数,则S偶-S奇=nd/2;

若n为奇数,则S奇-S偶=a中(中间项)。

注意:

一个推导

利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

两个技巧

已知三个或四个数组成等差数列的一类问题,要善于设元。

(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元。

四种方法

等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N.)都成立;

(3)通项公式法:验证an=pn+q;

(4)前n项和公式法:验证Sn=An2+Bn.

注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列。

高三高考数学必背知识点总结归纳篇7

1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。

2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。

3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。

4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。

5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。

6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。

7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。

8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。

9.从实际问题中抽象出二元一次不等式(组)的步骤是:

(1)根据题意,设出变量;

(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;

(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。

高三高考数学必背知识点总结归纳篇8

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20__年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。