范文网 >资料大全 >综合资料 >积乘方教学设计

积乘方教学设计

白满川 分享更新时间:
投诉

积乘方教学设计

作为一名优秀的教育工作者,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教学设计应该怎么写呢?下面是小编为大家收集的积乘方教学设计,希望对大家有所帮助。

积乘方教学设计1

【教学目标】

知识目标:经历探索积的乘方的运算发展推理能力和有条理的表达能力。学习积的乘方的运算法则,提高解决问题的能力。进一步体会幂的意义。理解积的乘方运算法则,能解决一些实际问题。

能力目标:能结合以往知识探究新知,熟练掌握积的乘方的运算法则。

情感目标:提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心。

【教学重点】

会用积的乘方性质进行计算

【教学难点】

灵活应用公式。

【课前准备】

自学课本P143-144

【教学课时】

1课时

【教学过程】

一、课前阅读。

自已阅读课本P143-144,尝试完成下列问题:

(1)(2a)3;

(2)(-5b)3;

(3)(xy)2;

(4)(-2x3)4

二、新课学习。

(一)引入:填空,看看运算过程用到哪些运算律?运算结果有什么规律?

(1)(ab)2=(ab)÷(ab)=(a÷a)÷(b÷b)=a()b();

(2)(ab)3_______=_______=a()b()。

(3)(ab)n=______=_______=a()b()

(二)阅读效果交流。

1、运用乘方的意义进行运算。

【教师点拨】关于第(2)、(3)运算,底数是ab,把它看成一个整体进行运算。用乘法交换律和结合律最后用同底数幂的乘法进行运算。

2、在观察运算规律的时候,从底数和指数两方面考虑。

【学生总结】我们可以得到的规律是:

符号表示:一般地,我们有(ab)n=anbn(n为正整数)

语言叙述:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(三)阅读中学习。

1、例1、(1)(-5bc)3;(2)(xy2)2;(3)(-2xy3)4.

阅读后分析:本题是否是公式的直接应用?能否沿用公式的形式?

阅读后讲解:注意系数也要乘方,注意符号。公式拓展:(abc)n=anbncn

【教师点拨】在初学阶段,按照公式逐步运算。可与课前阅读题目相比较,考察题目间的联系和区别,运算的时候要注意符号。

2、例2、2(x3)2÷x3-(3x3)3+(5x)2÷x7

①阅读后分析:从形式上看,是公式的扩展,包含了多种公式的.应用。并包含了多种运算。

②阅读后讲解:学会举一反三用联系的观点看问题。运算顺序要遵循先算乘方,后算乘除,最后算加减。

解:原式=2x6÷x3-27x9+25x2÷x7

=2x9-27x9+25x9=0

③阅读后反思:A、形式上包含积的乘方,也用到同底数幂的乘法。

B、“积”的形式,可以是几个多项式相乘。

C、用到整体思想。

【教师点拨】公式的拓展应用,上述例题易错点有系数忘记乘方、负数的乘方所得结果的符号。运算时注意运算顺序。

3、对应练习

(-2x3)3÷(x2)2+x13

①阅读后分析:本题既有用到积的乘方,又考察了同底数幂的乘法。按照运算法则运算即可,注意系数和符号。

②阅读后讲解:一般的运算顺序是先算乘除后算加减,有乘方的先算乘方。

③阅读后反思:本题是公式的灵活应用,要求同学首先知道运算顺序,其次选对公式。

【教师点拨】运算要认真仔细、熟记运算法则。

三、课堂拓展练习。

1、阅读下列材料,完成后面练习

an÷bn=(ab)n(n为正整数)

an÷bn=──幂的意义

=──乘法交换律、结合律

=(ab)n──乘方的意义

【教师点拨】积的乘方法则可以进行逆运算。即an÷bn=(ab)n(n为正整数)。

2、对应练习:

例1、(0.125)7×88

阅读后分析:仿照阅读材料,可做适当变形逆用公式。

阅读后解答:

解:原式=(0.125)7×87×8

=(0.125×8)7×8

=1×8

=8

对应练习(0.25)8×4102m×4m×()m

【教师点拨】活用公式、逆用公式是本章的一个重点。

例2、已知2m=3,2n=5,求23m+2n的值。

阅读后分析:按照公式的逆用,求23m+2n的值,由已知条件不能求出m,n的值,因此可以想到将2m,2n整体代入,这就需要逆用同底数幂乘法的运算性质和幂的乘方的运算性质。

阅读后讲解:学生黑板演示,学生纠错。

2、综合题

探讨如何简便运算:(0.04)20xx×[(-5)20xx]2

解法一:(0.04)20xx×[(-5)20xx]2解法二:(0.04)20xx×[(-5)20xx]2

=(0.22)20xx×54008=(0.04)20xx×[(-5)2]20xx

=(0.2)4008×54008=(0.04)20xx×(25)20xx

=(0.2×5)4008=(0.04×25)20xx

=14008=12004

=1=1

【教师点拨】逆用积的乘方法则anbn=(ab)n可以化简一些复杂的计算。

【解题后反思】:这些练习用到了哪些知识点,体现了哪些数学思想和方法?

四、学习后小结。

重新浏览教材,说一说你有什么收获。

学生总结,教师强调三点:

1、积的乘方法则:积的乘方等于每一个因式乘方的积。即(ab)n=an÷bn(n为正整数)。

2、三个或三个以上的因式的积的乘方也具有这一性质。如(abc)n=an÷bn÷cn(n为正整数)。

3、积的乘方法则也可以逆用。即an÷bn=(ab)n,an÷bn÷cn=(abc)n,(n为正整数)。

【教师点拨】

1、总结积的乘方法则,理解它的真正含义。

2、幂的三条运算法则的综合运用

五、课后作业。

详见配套练习

积乘方教学设计2

课 题:积的乘方

教学课时:1课时

学习目标:1、经历探索积的乘方性质的过程,提高学生推理能力和有条理的表达能力。

2、理解并掌握积的乘方运算性质,能灵活运用积的乘方运算性质进行整式的简单混合运算。

教学重点:积的乘方的运算性质的推导和应用。

教学难点:灵活运用积的乘方运算性质进行整式混合运算。

教学准备:多媒体课件。

教学方法:讲练法、自学指导法。

教学过程设计:

教学流程

学生活动

教师活动

设计意图

复习旧知

完成复习题,(学生演排)

展示复习题:(ppt)

计算:(a2)4..a-(a3)2.a3

通过此题,让学生复习幂的乘方、同底数幂的乘法及整式加减的运算法则,为学习新知打下基础。

创设情景导入新课

思考教师提出的问题,并回答。

1、展示问题(ppt)

已知一个正方体的棱长为2× 103cm ,你能计算出它的`体积是多少吗?

2、点学生列出算式

3、提问:(2×103)3 ,是幂的乘方形式吗?(底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。)积的乘方如何运算呢?有前两节课的探究经验,请同学们自己探索,发现其中规律。

4、展示学习目标。

通过创设实际问题情景,得出积的乘方的计算问题,从而导入新课,并展示学习目标,使学生明确学习要求。

学生自主探究学习

1、自主学习,完成积的乘方运算性质的探究。

2、独立完成尝试练习题。

展示自学提纲:(ppt)

1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

(1)(ab)2=( )·( )=( )·( )=a( )b( )

(2)(ab)3=______=_______=a( )b( )

(3)(ab)n= =

=a( )b( ) (n为正整数)

2、请归纳出积的乘方的运算性质:

3、完成课本p98练习题

巡视学生完成自主学习情况

通过学生自主学习掌握积的乘方运算性质的推导和简单运用,提升学生的自学能力和表达能力。

展示交流

1、交流自学提纲中的第1题,并说明每步的依据。

2、演排自学提纲中第3题,非演排学生思考查找评价演排学生的解题。

3、举手交流发言。

1、评价学生的自主学习效果。

2、板书积的乘方运算性质。

3、根据学生演排交流情况,适时点拨,归纳总结解题方法及注意事项。

通过交流展示活动提升学生的表达能力,总结提炼性质及运用方法。

巩固训练

完成训练题

1、出示训练题:

计算:(-a)6-(-3a3)2-(2a)2.a4

2、点学生演排

3、请学生评价,适时点拨。

通过巩固训练提升学生的知识运用能力。

合作探究

1、独立思考问题

2、小组合作交流

3、班级交流、讨论

1、出示问题:

计算:42013.(-0.25)20xx

2、巡视学生合作学习情况,参与讨论。

3、组织学生交流讨论,适时点拨。

4、总结归纳。

通过合作探究学习拓展性质的运用,提高学生的合作意识和合作能力。

拓展提升训练

完成训练题

1、出示训练题:

计算:(1)22013.42013.(-0.125)20xx

(2)(2/3)20xx.(-1.5)20xx

2、巡视学生完成情况

3、组织交流、讨论,适时点拨总结。

通过提升训练延伸知识的运用。

小结

回顾本节课所学知识,交流学习心得体会

1、提问:通过本节课的学习,你学到了些什么?

2、组织学生交流并适时总结。

通过小结活动加深知识的理解。

当堂检测

独立完成检测题

1、出示检测题(ppt)

计算:(1)(-2m3n2)3

(2)(-a2)2.(-2a3)2

(3)(-x2y)3+7(x2)2·(-x)2·(-y)3

(4) (0.125)7×88

2、请学生演排,订正答案,统计学生完成情况

通过当堂检测反馈课堂教学效果。

作业布置

完成作业

布置作业题:课本p104习题第2题

通过作业巩固知识

板书设计:

积的乘方

积的乘方运算性质:(ab)n=anbn(n是正整数)

积的乘方,等于把每个因式分别乘方,再把所得的幂相乘。

积的乘方性质的逆用:anbn=(ab)n

同指数的幂相乘,底数相乘,指数不变。

积乘方教学设计3

课题:

积的乘方

教学课时:

1课时

学习目标:

1、经历探索积的乘方性质的过程,提高学生推理能力和有条理的表达能力。

2、理解并掌握积的乘方运算性质,能灵活运用积的乘方运算性质进行整式的简单混合运算。

教学重点:

积的乘方的运算性质的推导和应用。

教学难点:

灵活运用积的乘方运算性质进行整式混合运算。

教学准备:

多媒体课件。

教学方法:

讲练法、自学指导法。

教学过程设计:

教学流程

学生活动

教师活动

设计意图

复习旧知

完成复习题(学生演排)

展示复习题:(ppt)

计算:(a2)4..a-(a3)2.a3

通过此题,让学生复习幂的乘方、同底数幂的乘法及整式加减的运算法则,为学习新知打下基础。

创设情景导入新课

思考教师提出的问题,并回答。

1、展示问题(ppt)

已知一个正方体的棱长为2× 103cm,你能计算出它的体积是多少吗?

2、点学生列出算式

3、提问:(2×103)3,是幂的乘方形式吗?(底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。)积的乘方如何运算呢?有前两节课的探究经验,请同学们自己探索,发现其中规律。

4、展示学习目标。

通过创设实际问题情景,得出积的乘方的计算问题,从而导入新课,并展示学习目标,使学生明确学习要求。

学生自主探究学习

1、自主学习,完成积的'乘方运算性质的探究。

2、独立完成尝试练习题。

展示自学提纲:(ppt)

1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

(1)(ab)2=()·()=()·()=a()b()

(2)(ab)3=______=_______=a()b()

(3)(ab)n==

=a()b()(n为正整数)

2、请归纳出积的乘方的运算性质:

3、完成课本p98练习题

巡视学生完成自主学习情况

通过学生自主学习掌握积的乘方运算性质的推导和简单运用,提升学生的自学能力和表达能力。

展示交流

1、交流自学提纲中的第1题,并说明每步的依据。

2、演排自学提纲中第3题,非演排学生思考查找评价演排学生的解题。

3、举手交流发言。

教师:

1、评价学生的自主学习效果。

2、板书积的乘方运算性质。

3、根据学生演排交流情况,适时点拨,归纳总结解题方法及注意事项。

通过交流展示活动提升学生的表达能力,总结提炼性质及运用方法。

巩固训练:完成训练题

1、出示训练题:

计算:(-a)6-(-3a3)2-(2a)2.a4

2、点学生演排

3、请学生评价,适时点拨。

通过巩固训练提升学生的知识运用能力。

合作探究

1、独立思考问题

2、小组合作交流

3、班级交流、讨论

通过合作探究学习拓展性质的运用,提高学生的合作意识和合作能力。

拓展提升训练:完成训练题

1、出示训练题:

计算:(1)2xxxx.4xxxx.(-0.125)xxxx

(2)(2/3)xxxx.(-1.5)xxxx

2、巡视学生完成情况

3、组织交流、讨论,适时点拨总结。

通过提升训练延伸知识的运用。

小结

回顾本节课所学知识,交流学习心得体会

1、提问:通过本节课的学习,你学到了些什么?

2、组织学生交流并适时总结。

通过小结活动加深知识的理解。

当堂检测:独立完成检测题

1、出示检测题(ppt)

计算:(1)(-2m3n2)3

(2)(-a2)2.(-2a3)2

(3)(-x2y)3+7(x2)2·(-x)2·(-y)3

(4)(0.125)7×88

2、请学生演排,订正答案,统计学生完成情况

通过当堂检测反馈课堂教学效果。

作业布置:完成作业

布置作业题:课本p104习题第2题

通过作业巩固知识

板书设计:

积的乘方

积的乘方运算性质:(ab)n=anbn(n是正整数)

积的乘方,等于把每个因式分别乘方,再把所得的幂相乘。

积的乘方性质的逆用:anbn=(ab)n

同指数的幂相乘,底数相乘,指数不变。