梯形的面积教学反思
梯形的面积教学反思(通用15篇)
作为一位优秀的老师,我们都希望有一流的课堂教学能力,教学的心得体会可以总结在教学反思中,那么什么样的教学反思才是好的呢?下面是小编为大家整理的梯形的面积教学反思,欢迎阅读与收藏。
梯形的面积教学反思1
片段一:关注学生思考方法的多样化。
在讨论梯形的面积计算公式的时候,如,将梯形转化成其他图形的时候,各个小组发挥集体的智慧,想出了很多种方法。
师:下面我们一起来交流一下各小组的方法。
生1:我们小组用两个完全一样的梯形拼成一个平行四边形,平行四边形的面积我们以前学过,所以这是我们小组想的。
师:说得真好,哪个小组还有不同的想法?
生2:我们小组通过将梯形沿着对角线剪下来,分成两个三角形。
师:哪个小组的同学愿意起来评价一下他们小组的想法?
生3:我认为这个方法好是好,不过转化后的图形的面积怎么求啊?
师:对啊,你们小组能帮忙解答么?(老师要有一种装不明白的精神,激发学生好奇心和挑战欲)
生4:我们小组认为,虽然分成了两个三角形,它们形状不同,但是它们的高是一样的。根据我们刚刚学过的三角形计算公式可以求出。(其他小组的学生在这位小老师的提示下明白了)
师:看看学生经过奇思妙想,想出了这么多的'好方法,还有不同方法吗?
这时其他小组的学生争先恐后地介绍各小组的方法,有的用对折的方法,有的用剪拼的方法,真是八仙过海,各显神通。老师惊喜地发现,学生在推导梯形面积的过程中同时强化了转化的数学思想。
片段二:利用转化思想拓展教学视野,建立数学模型。
在本节课的拓展练习上,我是这样处理的:
已知等腰梯形上、下底的和是10cm,高6cm,求梯形的面积?想象一下,如果这个梯形的高还是6cm,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?
师:恩,这位同学非常灵活地运用公式解决这一个问题,想象一下,如果这个梯形的高不变,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?你估计它的上底和下底会是多少?
(在思考画出新图形的环节上学生遇到了困难,不知道从哪下手。沉思片刻有个女孩举手了)
师:你来说说看,梯形的上底和下底可能会是多少?
生1:上底4 cm下底6 cm。
(这时学生的热情瞬时被点燃,个个举高小手抢答下面可能会出现的情况)
生2:上底3 cm下底7 cm。
生3:上底2 cm下底8 cm,上底1 cm下底9 cm,上底0。5 cm下底9。5 cm。
师:如果继续往右走你想最终会变成一个什么图形?
生:三角形。
师:如果从一开始往左走,你想会变成一个什么图形?
生:长方形。
师:恩,也是特殊的一种平行四边形。
生2:哎,老师,我发现了一个问题。
师:孩子你说。
生3:老师我还有一点补充,在这个变化过程中,虽然面积都相等,但是各个图形的形状却不相同
师:讲得真好。对呀,这就是我们数学上的一种重要的变化规律:叫等积变形。看你们多么厉害,发现了这么多规律,真了不起,老师真佩服你们的思维。
师:通过我们刚才想象的过程,原来梯形的面积、三角形的面积、平行四边形的面积,它们通过变化是否可能存在一定的联系呢?到底有怎样的联系呢?今后我们继续研究。
通过这道练习题,帮助学生对本单元学过的平行四边形、三角形、梯形之间建立多边形之间的联系,建立平面图形的数学模型:
梯形面积的一般公式是:S=(a+b)h÷2
当b=0的时候,这个式子就变成s=ah÷2,即成为三角形的面积公式;
当b=a的时候,这个式子就变成s=(a+a)h÷2,也就是s=ah,即成为平行四边形的面积公式。
学生经历了这个过程,能比较直观地感受到多边形之间的联系。
【案例反思】
(一)把错误当成宝贵资源
课堂上我充分利用学生的现实资源组织学生深入学习。如果学生课堂上出现了错误或困难,我更是珍惜这些错误的生成性资源,并给予及时的点拨指导,实现柳暗花明的效果。例如在探讨两个三角形的面积计算公式的时候,有的学生往往找不出转化后的三角形的两个高相等,特别是找钝角三角形的高时,容易出错或出现困难,这个时候我会及时点拨:如果是这个以梯形的上底为底边的三角形,你能找到它的高吗?这时很多学生会会心地点头,进而继续深入思考,发现两个三角形高之间的相等关系。
(二)合作学习
现在的学生一般都是独生子女,自尊心、自我意识强,与人合作交往的能力不高。为此,教学中我创设情境,让学生在不断交流与合作、不断相互帮助与支持中,感受合作交流的快乐与成功;让学生在合作交流中自由地发表个人的见解,通过集思广益,促进认知的发展。这样,既利于调动起全体学生参与到学习的全过程,又利于培养学生团结协作和社会交往能力。我认为,在教学过程中,在学生遇到有争议性或疑惑的问题时,安排适当的时间让学生合作交流是非常必要的。本节课,在认识转化后的图形的高的时候,大家就出现了争议,有的认为两个图形的高相等,有的认为转化后的图形的高是原来图形的一半,此时我就安排了小组交流,小组中的每个成员充分发表意见,进而完善认识。
梯形的面积教学反思2
这一课教学的重、难点是:学生在自主探索活动中,经历推导梯形面积公式的过程。因此,在呈现实际情境,让学生感受到学习梯形面积计算方法的必要性后,我创设了一个学生自主探索梯形面积的问题情境 老师准备不讲,看一看谁能用学过的知识,自己找出梯形的面积公式,你们能找到吗?学生用10分钟左右的时间在小组中经过充分的讨论和研究,通过动手剪、拼、贴,达成一致后,把小组的研究成果写在黑板条贴在黑板上,进行展示,主要有六种方法:
①用两个完全相同的`梯形拼凑成一个平行四边形。
②沿梯形的一条对角线剪开,把梯形分割成两个三角形。
③沿梯形的中位线剪开后,拼成一个平行四边形。
④在梯形的下底上找一点,把梯形分割成三个三角形。
⑤沿着梯形的上底的两个端点画出两条高,把梯形分割成一个长方形 和两个三角形。
⑥沿梯形的中位线向下对折,再沿两腰中点向下作垂线,把两个三角形向内折就变成两个长方形。
在探索问题过程中得到启示,从中悟出真知〔S梯形=(a+b)h2〕。
这充分说明,教学过程中只要多给学生一些思考的空间和时间,放手让学生进行探索,学生的潜力是很大的。
梯形的面积教学反思3
《新课标》中明确指出“数学教学应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”现就以五年级第九册教材中的《梯形的面积计算公式公式》的教学为例,谈谈自己的几点浅见。
[片断]
师:同学们已经掌握了推导平行四边形、三角形面积计算公式的方法,那你能把梯形转化成已学过的平面图形并推导出面积的计算公式吗?
生1:可以转化成长方形吧。
生2:也可能转化成平行四边形。
生3:也许三角形呢?
……
师:那好,就请你们利用准备好的`学具,小组内先议一议,然后剪一剪、拼一拼,看看有什么发现?
(学生合作讨论,然后动手操作)
师:通过刚才的动手操作,大家有什么发现吗?
生1:我们组发现用两个完全一样的梯形可以拼成一个平行四边形。
S=(a+b)·h÷2
生2:我们组还发现用两个完全一样的直角梯形可以拼成一个长方形。
S=(a+b)·h÷2
生3:我们是沿着一条对角线剪开,分割成两个三角形。
S=a·b÷2+b·h÷2=(a+b)·h÷2
生4:如果是等腰梯形,沿上下底的中点的连线剪开,可以拼成一个长方形。
S=(a+b)·h÷2
……
(学生想出了很多方法)
师:同学们真了不起,想出了这么多的好办法来推导梯形的面积计算公式,希望在今后的学习中,继续发扬这种精神。
[反思]
一、还学习的主动权于学生
苏霍姆林斯基曾说过“在热的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者,研究者。”而儿童的这种需要更为强烈。学生一旦在自己的活动中无意间发现了新的知识,就触动了他的这种需要。他就会有一种探究的欲望,此时的教师应适时地创设一定的问题情景,给学生一个活动的时间和空间,教师真正做一个学习的引导者、组织者和合作者。有时教师要舍得“放”,说不定学生会给你更多的惊喜。
二、让学生亲历知识的获取过程
新课程的理念,要求教师把自主探索的机会、时空留给学生,让学生在探究过程中感受到问题的存在,从而引发学生探究问题、解决问题的欲望。不是说教者更重要的是“授之以渔”,而不是“授之以鱼”吗?这个案例中正是注重了这一点。在教学中,教师以一句“同学们已经掌握了推导平行四边形、三角形面积计算公式的方法,那你能把梯形转化成已学过的平面图形来推导面积的计算公式吗?”把学生的思维拉到“转化”的思想上来,又给予了多元的方法提示(可以议一议、剪一剪、拼一拼),让学生的思维有了更多的活动空间与形式,从而生成了更多的新知识,这才是真正的“授之以渔”啊!
梯形的面积教学反思4
本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:
一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;
二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的达成之所以很理想,是因为本节课中我努力做到了以下两点。
一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的`发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
梯形的面积教学反思5
星期五,我们几位年轻老师有幸得到教育局高老师的指点,对我们的课堂教学进行指导。
我讲的是梯形的面积一节。第一部分是认识梯形,第二部分是梯形面积公式的推导过程得出公式,第三部分是面积公式的实际应。
这节课,高老师提出了非常深刻的问题。在刚开始由平行四边形引入梯形时,画成了等腰梯形,太具有特殊性,因此一下子跳到了后面的学习,这里应该画一个一般的.梯形,体现一般性。其次是数学语言的描述不准确,“梯形的高和平行四边形的高一样”应该描述为“梯形的高与平行四边形的高相等”。还有是知识的缺漏,梯形的高有无数条没有向学生们讨论,另外在“用两个完全相同的梯形拼一个平行四边形”时,没有说好前提是“两个完全一样的梯形”,虽然在后面的练习中提到,但是学生的第一印象是非常重要的,这样就有点盲羊补牢,要重视学生的第一印象,此处学具也少,应该让学生再拿两个不相同的梯形进行拼凑,让学生充分体验“完全一样”。在学生上前展示的过程中,可以把梯形贴在黑板上,这样更容易观察。在这节课中我讲的内容很多,高老师提意量可少,但内容要精,要全面。对于数学的学习,高老师提到了数学思想“转化思想”,知识有变化,思想却不会变解决问题的方法却不会变,这一点是非常重要的。
关于青年教师的成长,高老师提出了很重要的一点就是“悟”。对于教学除了多看、多听、多学习,最重要的一点就是多思考、多反思,思考可以把别人的东西内化为自己的东西,也可以对某一件事恍然大悟。因此在教学中要多“悟”。
梯形的面积教学反思6
《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学课件的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的`面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“来源于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
在课件设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。课件能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
梯形的面积教学反思7
《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。
在设计这一课的教学时,我主要考虑体现以下这样几个方面:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的.能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
三、紧密联系生活。让数学源于生活,归于生活。
数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。
四、体现学生的主体性,让每个学生都能主动参与学习。
学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。
五、着重体现学生主动建构知识意义的过程。
本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。
在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。
梯形的面积教学反思8
教材分析:
本节课是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习组合图形面积计算的基础。学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。
教学目标:
1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:理解并运用梯形的面积计算公式。
教学难点:梯形面积公式的推导过程。
教学关键:怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与梯形各要素之间的关系。
教学过程:
一、课前复习
同学们,前几天我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?
(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)
请同学们看这幅图片,汽车玻璃是什么形状的 (课件出示课本88页汽车图) ?你会计算这块玻璃形的面积吗?(大多数学生会否定)今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积
(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)
二、探索转化:
1、引导学生提出解决问题方向:
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?
(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。)
2、动手转化:
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)
小组活动一:
(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。
全班汇报。
学生可能出现的情况:
(新课程标准的基本理念就是要让学生人人学有价值的数学,强调教学要从学生已有的经验出发,让学生亲身经历知识的学习过程。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)
3、公式推导:
同学可真聪明,想出了这么多的转化方法,我们先根据第一种转化方法来推导梯形的面积公式。
小组活动二:
现在请同学们思考一下,拼成的平行四边形的各部分与梯形的各部分有什么关系?它们的面积又有什么关系?梯形的面积计算方法又是怎样的呢?
小组交流一下,把你们组的发现或结论写下来。
全班交流自己的发现或结论。
归纳总结梯形的面积计算方法。
梯形面积 =(上底+下底)x高2 为什么要除以2呢?
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让学生自主探究、自主学习的教学理念,满足了学生希望自己是一个发现者、研究者、探索者的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出重点,又化解难点的目的。)
4、用字母表示梯形面积公式
同学们,如用a表示梯形上底,b表示下底, h表示高,s表示面积, 谁能用字母表示出梯形的面积公式?指名说,老师板书。
其实利用这几种转化方法(指前面画的图)也可以推出梯形的面积公式,小组合作推导一下。然后全班交流推导过程。
(鼓励学生采用多种方法进行推理,让学生各抒已见,进一步体会转化方法的价值。)
三、应用公式解决问题
1、我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!
您现在正在阅读的《梯形的面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《梯形的面积》教学设计及反思课件出示例3主题图
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,
它的的横截面的一部分是梯形,现在我们要求这个横截面的面积。谁知道横截面是什么意思?
同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。
订正时,让学生评价,重在理顺学生的解题思路。
(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力, 学以致用,来解决生活的实际问题。)
2、现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗? 课件出示玻璃的数据,学生试做,二生板书。集体评价。
(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)
四、练习检测:
1、填空:
两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于(), 拼成的.平行四边形的高等于( ) 、梯形的面积等于拼成的平行四边形面积的( )。梯形的面积等于( )。
(理清学生思路,规范学生的数学语言,培养学生思维的逻辑性)
2、是判断题,判断出对错并且说出原因,提高学生对新课的理解。
(1)两个面积相等的梯形可以拼成一个平行四边形。 ( )
(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。( )
(3)梯形的面积等于平行四边形面积的一半。( )
(4)两个梯形面积相等,但形状不一定相同。( )
五、反思总结,拓展延伸
1、学生谈收获,谈学习方法。
2、组内互评:这节课你最想表扬谁,为什么?
【教学反思】
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过拼、剪、割的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到知其然,必知其所以然,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的闸门,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过拼、剪、说的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
梯形的面积教学反思9
1、通过教学,让我更加明白:
要充分相信学生。新课程理念中,要让学生通过自主探究,主动获取知识。这节课从学生的生活实际问题出发,一开始就让学生感受到生活中很多时候要计算梯形的面积,从而引发学生探究梯形面积的学习欲望。在这种内驱动力之下,学生调动自己已有的知识经验,探究出了很多种方法,培养了创新思维能力和自主学习的能力。
2、学生的创新能力不是一节课就能培养起来的。
这节课学生能够想出那么多种方法,要以前几节课的探究平行四边形和三角形的面积为基础,学生的自主探究能力要经过一定量的积累,而不是一蹴而就的。但是如果长期这样得到训练,学生探究所需要的时间就会越来越短,创新能力也会越来越强。
3、本节课的设计考虑到了一个首尾照应的艺术原则。
课的导入部分以优美的音乐伴随引入生活中的问题,课的结尾同样以伴乐欣赏生活中的.梯形。在轻松的氛围中让知识得到延伸,又遵循了“数学知识从生活中来,到生活中去”的理念。
4、这节课还经过研究提炼,让我认识到:
在学生探究各种方法的时候,不必马上让学生统一到梯形的面积计算的规则公式中来。有套用模式之嫌。可以在最后让大家一起观察,把各种方法进行沟通,理解,在统一。
梯形的面积教学反思10
一、提出问题,激发兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的.梯形,就不失时机地提醒他:你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?学生兴趣盎然。很快就表示出两个三角形的面积,即:上底高2 、 下底高2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
梯形的面积教学反思11
在教学梯形的面积公式推导过程中,我所讲的话并不多,都是一些引导性的语言,学生能说出的,教师决不讲解,学生能解决的,教师决不插手。
教学中创设情境,让学生在不断交流与合作、不断相互帮助和支持中,感受合作交流的快乐与成功,在教学过程中,在有争议性的问题和有疑惑的问题时安排适当的`时间让学生合作交流是非常必要的。
在教学中,我作了一次集体性的评价:“哪个小组表现最好的?”在全课总结时安排了一次个性的评价:“你认为这节课谁表现最好啊?你自己的表现呢?” 只有进行正确、适度的评价,关注学生共性的同时,更关注学生个性,才能使学生从评价中受到鼓舞,得到力量,勇于前进。
多媒体课件的演示,可把教学内容表现得丰富多彩、形象生动。激发学生浓厚的学习兴趣和强烈的求知欲望,引导学生主动积极地参与学习。通过动态图象演示,不仅能把高度抽象的知识直观演示出来,而且其突出的较强的刺激作用有助于学生理解概念的本质属性。因此,在教学“梯形的面积”时,安排了多媒体课件的演示梯形的面积公式的推导过程,让学生通过演示,加深对梯形面积公式的理解。
通过了这节课的教学,学生理解了梯形的面积公式的推导,掌握梯形的面积计算,但在发展学生的创新思维方面较欠缺。
梯形的面积教学反思12
通过平行四边形和三角形的面积计算公式推导过程的体验,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。
一、创设问题情境,激发学生兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、培养学生自主学习能力。
考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。
我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性和积极性,最终达到使学生有效的`实现对梯形面积公式的理解的目的。
三、渗透数学中的变换思想。
在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。
但在这节课当中,也存在一定的不足,主要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
梯形的面积教学反思13
一、加强探索方法的指导,避免假操作。
在今天学生进行操作时,我要求学生先想好操作的顺序。特别是在计算梯形面积的时候,用数一数或分一分,移一移的方式算出梯形的面积,避免在操作过程中使用梯形的面积公式来计算。这样一来,学生得出的操作结果是真实的.,对于用两个完全一样的梯形拼成一个平行四边形,每个梯形的面积是平行四边形面积的一半这一知识点有了一个直观的感受。尽管学生在交流时有个别学生数梯形的面积出现了一点的小错误,但是这是个过程是真实的,有效的。
二、规范学生的语言。
因为在完成三角形练习时有这么一道判断题:三角形的面积是平行四边形面积的一半,我们班居然有大部分学生毫不犹豫地认为这是正确的。所以我就在想,是不是我在上三角形的面积一课时出现了一点问题。所以,本节课我特别注意他们的表述语言,的确,是有很多学生的语言并不完备,常常会出现:梯形的面积是平行四边形面积的一半这种并不完备的语言。当学生出现这种语言时,及时地予以修正和改正,当即引起学生的注意。这样的效果比后面纠正要好很多。
梯形的面积教学反思14
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
下面就从以下几个方面进行剖析:
(一)以旧促新,探究新知
1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。
2、推导梯形的面积计算公式。
在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的.一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。
接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。
本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。
(二)学以致用。
在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)
总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变 "教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。
梯形的面积教学反思15
我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第
三、第四种方法,由于推导的过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。
这节课存在的不足之处:
首先,对学生的关注还不够。几次学生的板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。
第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。
第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。
反思教学,在推导公式的过程中,先汇报计算方法和结果,再展示思考方法,接着讨论这种方法的合理性,是否能用这种方法解决全部梯形的'面积计算,进而得出梯形的面积公式。从教学效果看,大部分学生能运用初步形成的转化的思想将两个完全一样的梯形转化为已经尝过的平行四边形来推导梯形的面积计算公式。学生在汇报时还有一种方法是将梯形运用割补法将梯形转化为平行四边形,然后推导出梯形的面积计算公式。整体来看不如前几节课效果好。
仔细分析原因如下:
一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。
二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。
三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。